Bilance_zimní semestr 2007

Post on 07-Jun-2015

58 views 0 download

transcript

Zadání úlohy

1. Název procesu : Výroba sody - Solvay metoda

2. Podstata procesu:

V koloně K reaguje nasycený vodný roztok solanky s plynnou směsí čpavku a oxidu uhličitého za

vzniku bikarbonátu sodíku a chloridu ammonného. Vzhledem k malé rozpustnosti bikarbonátu

sodného dochází za provozní teploty k jeho vysrážení a vzniku suspenze. Ta se filtruje na

bubnovém filtru a filtrační koláč ne promýván vodou. Filtrát je odváděn na regeneraci čpavku.

Filtrační koláč je veden do kalcinační rotační pece, kde se bikarbonát termicky rozkládá na sodu

a oxid uhličity a vodní páru. Odplyny jsou vedeny na vstup do procesu a soda je odváděna jako

produkt.

3. Flowsheet:

4. Zadané parametry procesu:

Množství zpracovávané soli 20 t/denTeplota vstupujícího nasyceného roztoku solanky 25 °C

FILTRACEKONVERZ E

2

1

4

3 5

6

7 8

9

Přebytek oxidu uhličitého ve vstupním plynném proudu 50 % obj.Zbytkový obsah amoniaku v odplynu z kolony 0.5 % obj.Obsah vody ve filtračním koláči 30 % hm.

0.98Množství promývací vody = n-násobku množství vody vystupující z filtru ve filtračním koláči n = 1

Obsah bikarbonátu ve filtrátu odpovídá nasycenému roztoku 0.0753

Nasycený roztok NaCl NaCl 0.3566

5: Soupis proudů, složek a bloků:

molární hmotnost

Soupis - proudy Soupis - složky kg / kmol

1 Solanka 1 18.02

2 Vstupní plyn 2 NaCl 58.44

3 Suspense 3 44.01

4 Odplyny 4 17.03

5 Filtrát 5 84.01

6 Promývací voda 6 53.49

7 Filtrační koláč 7 105.99

8 Produkty rozkladu

9 Produkt

6: Základ výpočtu:

bilancujeme: hmotnost

7: Referenční proud:m1;2 = 25 tun NaCl / den = 0.115741

8. Přepočty:

Vstupní proud nasycené solanky:

Proud Složka kg

1 2 35.7 0.262863 kg/Σkg

1 1 100.0 0.737137 kg/Σkg

135.7 1

Vstupní proud plynu:

kmol kg

2 3 150.0 6601.5 0.795 kg/Σkg

2 4 100.0 1703.0 0.205 kg/Σkg

150.0 8304.5 1.000

Odplyny z kolony: kmol kg

4 3 99.5 4378.995 0.998 kg/Σkg

Stupeň přeměny NaCl na NaHCO3

NaHCO3 kg/kg H2O

kg/kg H2O

NaCl,H2O H2O

NH3,CO2

NH4CL,NaCl,NaHCO3,H2O CO2

CO2, NH3 NH3

NH4CL,NaCl,NaHCO3,H2O NaHCO3

H2O NH4Cl

NaHCO3,H2O Na2CO3

H2O, CO2

Na2CO3

kg.s-1

kg.s-1

4 4 0.5 8.515 0.002 kg/Σkg

100 4387.51 1.000

Voda ve filtráčním koláči: kg

7 1 30 0.300 kg/Σkg

7 5 70 0.700 kg/Σkg

100 1.000

proud složka proud5 5 = 0.0753 5

Vztah mezi množstvím přiváděné prací vody

a množstvím vody ve filtračním koláči proud složka proud

6 1 = 1 7

proud složka proudr1 2 = 0.016769 1

9. Reakce, stechiometrické koeficienty reakcí::

reakce 1 NaCl + NH3 + CO2 + H2O = NaHCO3reakce 2 2 NaHCO3 = Na2CO3 + H2O

hmotnost létkové množství ( moly)

složka reakce 1 reakce 2 reakce 1

1 -18.02 18.02 18.02 -1

2 NaCl -58.44 0 44.01 -1

3 -44.01 44.01 -168.02 -1

4 -17.03 0 105.99 -1

5 84.01 -168.02 1

6 53.49 0 1

7 0 105.99 0

Následuje uspořádání informací v zadání do potřebné formy

viz následující list

Vztah mezi NaHCO3 a H2O - nasycený roztok

Stupeň konverze NaCl na NaHCO3

H2O

CO2

NH3

NaHCO3

NH4Cl

Na2CO3

FILTRACEKONVERZ E

2

1

4

3 5

6

7 8

9

Soupis - bloky

1 konverse

2 filtrace

3 kalcinace

složka1

složka

1

složka r1 = mol2 m1;2 = kg

m1;2 /58.44= molr1 = 0.98*m1;2 / 58.44

létkové množství ( moly)

reakce 2

1

0

1

0

-2

0

1

Připravit formulář pro incidenční matici

IM Incidencní maticebloky proudy

1 2 3 4 5 6 7 81 konverse2 filtrace

3 kalcinace

Vyplnit ho Jestliže proud do bloku vstupuje - zadat 1, jestliže proud z bloku vystupuje - zadat -1, jinak zůstává 0

IM Incidencní maticebloky proudy

1 2 3 4 5 6 7 81 konverse 1 1 -1 -1 0 0 0 02 filtrace 0 0 1 0 -1 1 -1 0

3 kalcinace 0 0 0 0 0 0 1 -1

Připravit formulář pro tabulku dat

TD Tabulka datsložky proudy

1 2 3 4 5 6 7 81 H2O2 NaCl3 CO24 NH35 NaHCO36 NH4Cl

7 Na2CO3

… a vyplnit ho včetně stechiometrických koeficientů obou reakcí (viz Zadání_soda)

Jestliže se složka v proudu vyskytuje, napíšeme 1 (bez znaménka), jinak zůstane nula

TD Tabulka datsložky proudy

1 2 3 4 5 6 7 81 H2O 1 0 1 0 1 1 1 12 NaCl 1 0 1 0 1 0 0 03 CO2 0 1 0 1 0 0 0 14 NH3 0 1 0 1 0 0 0 05 NaHCO3 0 0 1 0 1 0 1 06 NH4Cl 0 0 1 0 1 0 0 0

7 Na2CO3 0 0 0 0 0 0 0 0

Získání dalších potřebných informací pro matici koeficientů

Potřebujeme znát její rozměr, t.počet neznámých nX

počet neznámých = počet reakcí + SOUČIN.SKALÁRNÍ(C39:K45)nX= 2 + 20 = 22

Počet bilancí generujeme matici SOUČIN.MATIC(C39:K45,TRANSPOZICE(ABS(C16:K18)))

2 4 22 2 02 0 12 0 01 3 11 2 00 0 1

Počet nenulových prvků je počet bilančních rovnic blnc = 14

Povinně musíme nadefinovat referenční proud 1Počet dodatečných vztahů tedy bude 7Dodatečná vztahy mohou být jen ve třech způsobech zadání lineární

1 Je zadán tok složky - případ referenčního proudu2 Je zadána koncentrace (molový nebo hmotnostní zlomek) složky v proudu3 Je zadán poměr mezi tokem dvouu složek - konverse, výtěžnost, rozpustnost

Poměr mezi koncentracemi jedné slozky v různých proudech je nelineární !!!

Dodatečné vztahy zapisujeme ve formě následujících formulářů

Referencní proud Koncentrace složky v prouduproud složka prùtok kg/sec proud složka složení

1 2 0.115741 1 2 0.2628632 3 0.794934 4 0.0019417 1 0.3

Pomer toku slozekproud složka pomer proud složka

6 1 1 7 1

Potřebujeme dále znát počet bilančních rovnic (označujeme jako blnc )

BIL =

5 5 0.0753 5 15 2 0.02 1 2

Matice koeficientů Řešení lineární soustavy, základní pojmy ¨čtvercovámatice, inversní matice, maticový součin.

Vektor pravých stran B vysvětlit význam, formální vzorec řečení

pokračuje na ( soda_2)

X = A-1 x B

reakce

9 r1 r2

Jestliže proud do bloku vstupuje - zadat 1, jestliže proud z bloku vystupuje - zadat -1, jinak zůstává 0

reakce

9 r1 r20 1 00 0 0

-1 0 1

reakce

9 r1 r2### ### ###### ### ###### ### ###### ### ###### ### ###### ### ###

### ### ###

reakce

9 r1 r20 -18.02 18.020 -58.44 00 -44.01 44.010 -17.03 00 84.01 -168.020 53.49 0

1 0 105.99

Řešení lineární soustavy, základní pojmy ¨čtvercovámatice, inversní matice, maticový součin.

Vytvoříme základ matice koficientů . Bude mít rozměr nX x nX

0 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 0

Řádkem 1 je dáno : Každý proud bude mít tolik kolonek, kolik má tentýž proud jedniček (složek) v matici TD Druhý řádek udává které složky to jsouPrvní dva řádky jsou pomocné pro vytvoření řádku názvů neznámých (třetí řádek )

První sloupec udává blok a zároveň počet složek které se v bloku vyskytují (počet nenulových prvků sloupce bloku v matici BILDruhý sloupec udává číslo složky.

Tím vznikne následující formulář

Řádek

1 1 1 2 2 3

Sloupec 2 1 2 3 4 1

1 2 3 m1;1 m1;2 m2;3 m2;4 m3;11 1 0 0 0 0 01 2 0 0 0 0 01 3 0 0 0 0 01 4 0 0 0 0 01 5 0 0 0 0 01 6 0 0 0 0 0

2 1 0 0 0 0 02 2 0 0 0 0 02 5 0 0 0 0 02 6 0 0 0 0 03 1 0 0 0 0 03 3 0 0 0 0 03 5 0 0 0 0 03 7 0 0 0 0 0

0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

Zápis do matice koeficientů provádíme takto:V kontaktu s blokem 2 se složka 5 vyskytuje v proudu 3 a 5 Jestliže proud do bloku vstupuje napíšeme do políčka 1,

v opačném případě -1.Jinak zůstane 0

Řádek

1 proudy 1 1 2 2

Sloupec 2 složky 1 2 3 4

1 2 3 m1;1 m1;2 m2;3 m2;41 1 1 0 0 01 2 0 1 0 01 3 0 0 1 01 4 0 0 0 11 5 0 0 0 01 6 0 0 0 02 1 0 0 0 02 2 0 0 0 02 5 0 0 0 02 6 0 0 0 03 1 0 0 0 03 3 0 0 0 03 5 0 0 0 03 7 0 0 0 0

0 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0

Počet koincidencí složky s blokem udává hodnota odpovídajícího prvku matice BIL

0 0 0 00 0 0 00 0 0 0

Kontrola pomocí hodnosti matice 0

V Zadání_soda máme referenční proud 1koncentrace složky 4

poměr toků dvou složek 3

V dalším listu si ukážeme, jak se tato zadání včleňují do matice koeficientů

0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Řádkem 1 je dáno : Každý proud bude mít tolik kolonek, kolik má tentýž proud jedniček (složek) v matici TD

První sloupec udává blok a zároveň počet složek které se v bloku vyskytují (počet nenulových prvků sloupce bloku v matici BIL

3 3 3 4 4 5 5 5 5

2 5 6 3 4 1 2 5 6

m3;2 m3;5 m3;6 m4;3 m4;4 m5;1 m5;2 m5;5 m5;60 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Jestliže proud do bloku vstupuje napíšeme do políčka 1,v opačném případě -1.

3 3 3 3 4 4 5 5 5

1 2 5 6 3 4 1 2 5

m3;1 m3;2 m3;5 m3;6 m4;3 m4;4 m5;1 m5;2 m5;5-1 0 0 0 0 0 0 0 00 -1 0 0 0 0 0 0 00 0 0 0 -1 0 0 0 00 0 0 0 0 -1 0 0 00 0 -1 0 0 0 0 0 00 0 0 -1 0 0 0 0 01 0 0 0 0 0 -1 0 00 1 0 0 0 0 0 -1 00 0 1 0 0 0 0 0 -10 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

6 7 7 8 8 9

1 1 5 1 3 7

m6;1 m7;1 m7;5 m8;1 m8;3 m9;7 r 1 r 20 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

5 6 7 7 8 8 9

6 1 1 5 1 3 7 Vektor pravých stran

m5;6 m6;1 m7;1 m7;5 m8;1 m8;3 m9;7 r 1 r 20 0 0 0 0 0 0 -18.02 00 0 0 0 0 0 0 -58.44 00 0 0 0 0 0 0 -44.01 00 0 0 0 0 0 0 -17.03 00 0 0 0 0 0 0 84.01 00 0 0 0 0 0 0 53.49 00 1 -1 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 -1 0 0 0 0 01 0 0 0 0 0 0 0 00 0 1 0 -1 0 0 0 18.020 0 0 0 0 -1 0 0 44.010 0 0 1 0 0 0 0 -168.020 0 0 0 0 0 -1 0 105.990 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Vektor pravých stran

B0000000000000000000

000

Referencní proudproud složka prùtok

1 2 0.2345 kg/sec Tato informace se penese do matice koeficientů následujícím způsobem

m1;1 m1;2 m2;3 m2;4 m3;1 m3;2 ∙ ∙ ∙ ∙ ∙ ∙ r 1 r 2∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

0 1 0 0 0 0 ∙ ∙ ∙ ∙ ∙ ∙ 0 0

Koncentrace složky v prouduproud složka složení

3 1 0.475 Tento zápis odpovídá tomuto algebraickému vztahu

m3;1 / (m3;1 + m3;2 + m3;5 + m3;6) = 0.475 po úpravě dostaneme

(1- 1/0.475).m3;1 + m3;2 + m3;5 + m3;6 = 0

Do matice koeficientů zaneseme tento vztah následujícím způsobem

m3;1 m3;2 m3;5 m3;6 m4;3 m4;4 ∙ ∙ ∙ ∙ ∙ ∙ r 1 r 2∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

-1.105263 1 1 1 0 0 ∙ ∙ ∙ ∙ ∙ ∙ 0 0

Pomer toku slozekproud složka pomer proud složka

5 5 0.0753 5 1

Přenos této informace je poměrně jednoduchý (ale pozor na znaménka )

m4;4 m5;1 m5;2 m5;5 m5;6 m6;1 ∙ ∙ ∙ ∙ ∙ ∙ r 1 r 2∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

0 -0.0753 0 1 0 0 ∙ ∙ ∙ ∙ ∙ ∙ 0 0

Takto doplníme matici koeficientů.ficientů - viz soda_4Matice koeficientů , doplěná za použití dat ze Zadání_soda je na listu soda_4

Tato informace se penese do matice koeficientů následujícím způsobem

Vektor pravých stran

B000

0.2345

m7;1 m7;5 m8;1 m8;3po úpravě dostaneme

m9;7

Vektor pravých stran

B0000

B00

0

r 1 r 2 B

m1;1 m1;2 m2;3 m2;4 m3;1 m3;2 m3;5 m3;6 m4;31 0 0 0 -1 0 0 0 00 1 0 0 0 -1 0 0 00 0 1 0 0 0 0 0 -10 0 0 1 0 0 0 0 00 0 0 0 0 0 -1 0 00 0 0 0 0 0 0 -1 00 0 0 0 1 0 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 01 -2.804262 0 0 0 0 0 0 00 0 -0.257972 1 0 0 0 0 00 0 0 0 0 0 0 0 -0.9980592640 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 -0.016769 0 0 0 0 0 0 0

Kontrola - hodnost matice ###Pomocí funkce SouČin Matic dostaneme řešení TRANSPOZICE(SOUČIN.MATIC(INVERZE(A3:V24),W3:W24))

m1;1 m1;2 m2;3 m2;4 m3;1 m3;2 m3;5 m3;6 m4;30.32456742 0.1157407 0.0853974 0.0220301 0.2895925 0.0023148 0.1630546 0.1038185 -2.1435E-05

Výsledky výpočtu většinou prezentujeme v následující formě

1 2 3 4 5 6 71 H2O 0.3245674 0 0.2895925 0 0.2895925 0.060535 0.0605349892 NaCl 0.1157407 0 0.0023148 0 0.0023148 0 03 CO2 0 0.0853974 0 -2.14E-05 0 0 04 NH3 0 0.0220301 0 -0.011023 0 0 05 NaHCO3 0 0 0.1630546 0 0.0218063 0 0.1412483076 NH4Cl 0 0 0.1038185 0 0.1038185 0 0

7 Na2CO3 0 0 0 0 0 0 0

m4;4 m5;1 m5;2 m5;5 m5;6 m6;1 m7;1 m7;5 m8;10 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 -1 0 0 0 1 -1 0 00 0 -1 0 0 0 0 0 00 0 0 -1 0 0 0 -1 00 0 0 0 -1 0 0 0 00 0 0 0 0 0 1 0 -10 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0.0019407 0 0 0 0 0 0 0 00 0 0 0 0 0 -2.333333 1 00 0 0 0 0 1 -1 0 00 -0.0753 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0

TRANSPOZICE(SOUČIN.MATIC(INVERZE(A3:V24),W3:W24))

m4;4 m5;1 m5;2 m5;5 m5;6 m6;1 m7;1 m7;5 m8;1-0.011023 0.2895925 0.0023148 0.0218063 0.1038185 0.060535 0.060535 0.1412483 0.0756837

8 90.0756837 0

0 00.0369976 0

0 00 00 0

0 0.0891019

m8;3 m9;7 r 1 r 2 B0 0 -18.02 0 00 0 -58.44 0 00 0 -44.01 0 00 0 -17.03 0 00 0 84.01 0 00 0 53.49 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 18.02 0-1 0 0 44.01 00 0 0 -168.02 00 -1 0 105.99 00 0 0 0 0.1157410 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 1 0 0

m8;3 m9;7 r 1 r 20.0369976 0.0891019 0.0019409 0.0008407

Zadání úlohy: Výsledek řešení bude v listu Výsledkový list - Reporting, který musíme otevřít a zkopírovat do něj první čtyři body Zadání

Výsledkový list-Reporting

Obecné údaje o projektu:Datum:Vypracoval:Schválil:

Výroba práškového železa - ferrum reductum

2. Popis procesu:

Čerstvý nástřik, který obsahuje mimo vodíku ještě určité molové % CO2, se před vstupem do reaktoru

mísí s recyklovaným vodíkem. Poměr látkového množství recyklovaného vodíku ku čerstvému je

pevně stanoven technologickým reglementem

Po výstupu z reaktoru se z oběhového proudu nejdříve odstraní voda a pak se odtahuje určité

vstupu nepřesáhla hodnotu taktéž stanovenou technologickým reglementem.

3. Flowsheet:

1. Název projektu:

Železo se vyrábí tak, že se za zvýšené teploty redukuje Fe2O3 vodíkem na kovové železo

množství plynu tak aby se v systému nehromadil CO2. Odtahuje se tolik, aby koncentrace CO2 na

7

4

3

2

REAKTOR

DĚLI

Č

O D T A H

M Í S I Č

6

5

8

4. Zadané parametry procesu:

Produkce Fe 50 kg/ směna

1 % objemovéObsah CO2 v plynu na vstupu do reaktoru 2.5 % objemovéPoměr proudu vodíku, vstupujícího do směšovače

ku proudu čerstváho vodíku je 4 : 1Teplota proudu

1 252 253 254 255 256 257 258 259 25

5: Soupis proudů , složek a bloků:

molární hmotnost

Soupis - proudy Soupis - složky kg / kmol Soupis - bloky

1 surovina 1 2.01 1

2 produkt Fe 2 44.01 2

3 odplyn 3 18.01 3

4 vodní pára 4 Fe 55.85 4

5 suchý odplyn 5 159.70

6 odtah

7 recykl

8 čerstvý vodík

9 redukční plyn

6: Základ výpočtu:

bilancujeme: látkové množství

7: Referenční proud:

Obsah CO2 v čerstvém plynu

Fe2O3 H2

CO2

H2, CO2, H2O H2O

H2O

H2, CO2 Fe2O3

H2, CO3

H2, CO4

H2, CO5

H2, CO6

kmol.s-1

91

m2;4 = 5000 kg/ směna = 0.173611

= 0.003109

8. Přepočty:

kg kmol/kmol kg/kg

Proud Složka kmol 199.0 0.990 0.8198 1 99.0 44.0 0.010 0.1818 2 1.0 243.0 1.000 1.000

Součet 100.0

kg kmol/kmol kg/kg

Proud Složka kmol 196.0 0.975 0.6409 1 97.5 110.0 0.025 0.3609 2 2.5 306.0 1.000 1.000

Součet 100.0

9. Reakce, stechiometrické koeficienty reakcí::

Chemická reakce:reaktanty produkty reakce

Stechiometrické koeficienty stanovíme dle probíhajících reakcí a to tak, že složky výchozí

(reaktanty) mají znaménko stechiometrických koeficientů minus a prudukty reakcí mají stechiometrické koeficienty s kladnými znaménky.Steciometrické koeficienty využijeme při bilancování látkového množství v kmol.Pro bilancování hmotnosti v kg upravíme tabulků stechiometrických koeficientu vynásobením příslušných molárních hmotností.

Stechiometrické koeficienty: látkové množství hmotnost

Složky

1 -3 -6.03

2 0 0

3 3 54.034 Fe 2 111.7

5 -1 -159.7

Tento vztah je vždycky nelineární Je definován

kg.s-1

kmol.s-1

Fe2O3 + 3· H2 = 3· H2O + 2· Fe

H2

CO2

H2O

Fe2O3

V tomto případě je zadán vztah mezi složením dvou proudů

experimentálními daty1 fázovými rovnováhami mezi proudy odlišných ází2 chemickými rovnováhami meziproudy vstupujícími do reakce3 a vystupujícími z reakce

Zadání úlohy: Výsledek řešení bude v listu Výsledkový list - Reporting, který musíme otevřít a zkopírovat do něj

Soupis - bloky

reaktor

dělič

odtah

mísič

chemickými rovnováhami meziproudy vstupujícími do reakce

Výsledkový list-Reporting

Obecné údaje o projektu:Datum:Vypracoval:Schválil:

Výroba práškového železa - ferrum reductum

2. Popis procesu:

Čerstvý nástřik, který obsahuje mimo vodíku ještě určité molové % CO2, se před vstupem do reaktoru

mísí s recyklovaným vodíkem. Poměr látkového množství recyklovaného vodíku ku čerstvému je

pevně stanoven technologickým reglementem

Po výstupu z reaktoru se z oběhového proudu nejdříve odstraní voda a pak se odtahuje určité

vstupu nepřesáhla hodnotu taktéž stanovenou technologickým reglementem.

3. Flowsheet:

1. Název projektu:

Železo se vyrábí tak, že se za zvýšené teploty redukuje Fe2O3 vodíkem na kovové železo

množství plynu tak aby se v systému nehromadil CO2. Odtahuje se tolik, aby koncentrace CO2 na

4. Zadané parametry procesu:

Produkce Fe 50 kg/ směna

Obsah CO2 v čerstvém plynu 1 % objemové

Obsah CO2 v plynu na vstupu do reaktoru 2.5 % objemové

Poměr proudu vodíku, vstupujícího do směšovače

ku proudu čerstváho vodíku je 4 : 1

Teplota proudu

1 25

2 25

3 25

4 25

5 25

6 25

7 25

8 25

9 25

5: Soupis proudů a složek: molární hmotnost

Soupis proudů Soupis složek kg / kmol Soupis bloky

1 surovina Fe2O3 1 H2 2.01 1

2 produkt Fe 2 CO2 44.01 2

3 odplyn H2, CO2, H2O 3 H2O 18.01 3

4 vodní pára H2O 4 Fe 55.85 45 suchý odplyn H2, CO2 5 Fe2O3 159.7

6 odtah H2, CO3

7 recykl H2, CO4

8 čerstvý vodík H2, CO5

9 redukční plyn H2, CO6

6: Základ výpočtu:

bilancujeme: látkové množství

7: Referenční proud:

m2;4 = 5000 kg/ směna = 0.173611

= 0.001087

8. Přepočty:

Proud Složka kmol kmol/kmol kg kg/kg

8 1 99 0.99 199 0.819

8 2 1 0.01 44 0.181

Součet 100 1 243 1

Proud Složka kmol kmol/kmol kg kg/kg

9 1 97.5 0.975 196 0.64

9 2 2.5 0.025 110 0.36

Součet 100 1 306 1

9. Reakce, stechiometrické koeficienty reakcí::

Chemická reakce:

reaktanty produkty reakce

Fe2O3 + 3· H2 = 3· H2O + 2· Fe

Stechiometrické koeficienty stanovíme dle probíhajících reakcí a to tak, že složky výchozí

(reaktanty) mají znaménko stechiometrických koeficientů minus a prudukty reakcí mají

stechiometrické koeficienty s kladnými znaménky.

Steciometrické koeficienty využijeme při bilancování látkového množství v kmol.

Pro bilancování hmotnosti v kg upravíme tabulků stechiometrických koeficientu vynásobením

příslušných molárních hmotností.

Stechiometrické koeficienty:

Složky látkové množství hmotnost1 H2 -3 -6.032 CO2 0 03 H2O 3 54.034 Fe 2 111.75 Fe2O3 -1 -159.7

1 0

V tomto případě je zadán vztah mezi složením dvou proudůTento vztah je vždycky nelineární Je definován

kmol.s-1

kg.s-1

kmol.s-1

1 experimentálními daty2 fázovými rovnováhami mezi proudy odlišných ází3 chemickými rovnováhami meziproudy vstupujícími do reakce

a vystupujícími z reakce

Soupis blokyreaktorseparaceodtahmisič

chemickými rovnováhami meziproudy vstupujícími do reakce

Nejdříve si na základě zadání zapíšeme základní parametry:počet proudů 9počet chemických reakcí 1počet bloků 4počet složek 5

Pomocí doporučené šablony vytvoříme tabulky IM a TD

IM Incidencní maticebloky proudy

1 2 3 4 5 6 7 81 reaktor 1 -1 -1 0 0 0 0 02 separace 0 0 1 -1 -1 0 0 03 odtah 0 0 0 0 1 -1 -1 0

4 misič 0 0 0 0 0 0 1 1

TD Tabulka datsložky proudy

1 2 3 4 5 6 7 81 H2 0 0 1 0 1 1 1 12 CO2 0 0 1 0 1 1 1 13 H2O 0 0 1 1 0 0 0 04 Fe 0 1 0 0 0 0 0 0

5 Fe2O3 1 0 0 0 0 0 0 0

Skalární součin matice TD + počet reakcí nám dá počet neznámých SOUČIN.SKALÁRNÍ(C21:K25)+1Matice součinu TD x IM nám pomůže stanovit počet bilančních rovnic SOUČIN.MATIC(C21:K25,TRANSPOZICE(ABS(C13:K16)))

2 2 3 32 2 3 31 2 0 0 Bilanční rovnice = počet nenulových prvků =1 0 0 01 0 0 0

Na základě zadání zvolíme referenční proud Referencní proudproud složka prùtok mol/sec

2 4 3.108525

na základě zadání můžeme nadefinovat 2 koncentrace složky v proudu1 poměr toku složek

Koncentrace složky v proudu Pomer toku slozek

proud složka složení proud složka pomer8 2 0.01 7 1 49 2 0.025

17 x 17ve které bude 12 řádků bilančních rovnic

1 řádek Referenční proud2 řádky Koncentrace složek1 řádek Poměr toku složek

Tyto údaje zapíšeme do matice koeficientů nám již známým postupem1 2 3 3 3 4 5 55 4 1 2 3 3 1 2

n1;5 n2;4 n3;1 n3;2 n3;3 n4;3 n5;1 n5;21 1 0 0 -1 0 0 0 0 01 2 0 0 0 -1 0 0 0 01 3 0 0 0 0 -1 0 0 01 4 0 -1 0 0 0 0 0 01 5 1 0 0 0 0 0 0 02 1 0 0 1 0 0 0 -1 02 2 0 0 0 1 0 0 0 -12 3 0 0 0 0 1 -1 0 03 1 0 0 0 0 0 0 1 03 2 0 0 0 0 0 0 0 14 1 0 0 0 0 0 0 0 04 2 0 0 0 0 0 0 0 0

ref. Proud 0 1 0 0 0 0 0 0proud 8, x CO2 0 0 0 0 0 0 0 0proud 9, x CO2 0 0 0 0 0 0 0 0poměr H2 v p. 7 a 8 0 0 0 0 0 0 0 0dodatečný vztah 0 0 1 0 0 0 0 0

Hodnost matice ###

Pro dodatečný vztah 1 vytvoříme před vektor pravých stran B dalšíbude mít v posledním řáku 1, jinak samé nuly

2 v řádku dodatečného vztahu , kde jsou zatím samé nuly, zapíšeme do jedné buˇky 13 Spočítáme hodnost matice koeficientů. 4 Pokud se hodnost nerovná počtu neznámých musíme jedničku umístit do jiného políčka

Pravou stranu teď netvoří vektor, ale matice s dvěma sloupciŘešením také nebude vektor ale matice mající dva sloupce

Pomocí nám již známého postupu vytvoříme čtvercovou matici koeficientů nX x nX

Výsledek řešení rovnice X = A-1 x B je na dalším listu

reakce

9 r11 10 00 0

-1 0

reakce

9 r11 -31 00 30 2

0 -1

SOUČIN.SKALÁRNÍ(C21:K25)+1 17SOUČIN.MATIC(C21:K25,TRANSPOZICE(ABS(C13:K16)))

Bilanční rovnice = počet nenulových prvků = 12

proud složka8 1

6 6 7 7 8 8 9 91 2 1 2 1 2 1 2

n6;1 n6;2 n7;1 n7;2 n8;1 n8;2 n9;1 n9;2 r10 0 0 0 0 0 1 0 -30 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

-1 0 -1 0 0 0 0 0 00 -1 0 -1 0 0 0 0 00 0 1 0 1 0 -1 0 00 0 0 1 0 1 0 -1 00 0 0 0 0 0 0 0 00 0 0 0 1 -99 0 0 00 0 0 0 0 0 1 -39 00 0 -1 0 4 0 0 0 00 0 0 0 0 0 0 0 0

v řádku dodatečného vztahu , kde jsou zatím samé nuly, zapíšeme do jedné buˇky 1

Pokud se hodnost nerovná počtu neznámých musíme jedničku umístit do jiného políčka

0 00 00 00 00 00 00 00 00 00 00 00 00 3.1085250 00 00 01 0

Řešením není číslo x = a, ale lineární funkce x = a + C.b

Jestliže si jako C zvolíme 0.5 pak bude výsledkem řešení vektor označený n1;5 1.554262 0 1.554262 který vzniká jako součet součinůn2;4 3.108525 0 3.108525n3;1 0.5 1 0n3;2 0.132379 0.025641 0.119559n3;3 4.662787 0 4.662787n4;3 4.662787 0 4.662787n5;1 0.5 1 0n5;2 0.132379 0.025641 0.119559n6;1 -3.63023 0.2 -3.73023n6;2 0.01043 0.00202 0.00942n7;1 4.13023 0.8 3.73023n7;2 0.121949 0.023621 0.110139n8;1 1.032557 0.2 0.932557n8;2 0.01043 0.00202 0.00942n9;1 5.162787 1 4.662787n9;2 0.132379 0.025641 0.119559r1 1.554262 0 1.554262

Naším ůkolem nyní je najít takovou hodnotu C, aby byla splněna nelineární dodarečná podmínka Touto podmínkou je, že molový zlomek CO2 v proudech 5, 6 a 7 je stejnýObjektivní funkcí pak může být vztah objektivní funkce

n5;2/(n5;1 + n5;2) - n7;2/(n7;1 + n7;2) = 0 0.180656

Ke stanovení takového C při jehož hodnotě je splněna objektivní funkce nám poslouží funkce ŘešitelJe v menu Data na okénku Analyza

a i b jsou sloupce matice řešení a C je libovolná konstanta

1*E5+D5*$D$4

Nejdříve si na základě zadání zapíšeme základní parametry:počet proudů 3počet chemických reakcí 1počet bloků 1počet složek 5

Pomocí doporučené šablony vytvoříme tabulky IM a TD

IM Incidencní maticebloky proudy reakce

1 2 3 r11 kotel 1 1 -1 1

TD Tabulka datsložky proudy reakce

1 2 3 r1

1 CH4 1 0 1 -12 O2 0 1 1 -33 N2 0 1 1 04 CO2 0 0 1 1

5 H2O 0 0 1 2

Skalární součin matice TD + počet reakcí nám dá počet neznámých SOUČIN.SKALÁRNÍ(C19:E23)+1Matice součinu TD x IM nám pomůže stanovit počet bilančních rovnic

SOUČIN.MATIC(C19:E23,TRANSPOZICE(ABS(C14:E13)))

22211

Bilanční rovnice = počet nenulových prvků = 5

Entalpie složek kJ/molsložky proudy reakce

1 2 3 r163 CH4 1 0 1 -134 O2 0 1 1 -331 N2 0 1 1 048 CO2 0 0 1 1

22 H2O 0 0 1 2teplota °C 5 -15 150 Hr1

Entalpie složek kJ/molsložky proudy reakce

1 2 3 r1

63 CH4 #MACRO? ### ### #MACRO?

34 O2 #MACRO? ### ### #MACRO?

31 N2 #MACRO? ### ### #MACRO?

48 CO2 #MACRO? ### ### #MACRO?22 H2O #MACRO? ### ### #MACRO?

teplota °C 5 -15 150 Hr1#MACRO?

na základě zadání můžeme nadefinovat 2 koncentrace složky v proudu1 poměr toku složek

Koncentrace složky v proudu Pomer toku slozekproud složka složení proud složka pomer

2 2 0.21 2 2 3.753 1 0.004

1 2 2 3 3 3 31 2 3 1 2 3 4

n1;1 n2;2 n2;3 n3;1 n3;2 n3;3 n3;41 1 1 0 0 -1 0 0 01 2 0 1 0 0 -1 0 01 3 0 0 1 0 0 -1 01 4 0 0 0 0 0 0 -11 5 0 0 0 0 0 0 0

entalpie #MACRO? ### ### -4.8845336 -3.735451 -3.651651 -4.968694O2,proud 0 -5.761905 1 0 0 0 0CH4.proud3 0 0 0 -249 1 1 1přebytek O2 3.75 -1 0 0 0 0 0

Kontrola - hodnost matice ###Pomocí funkce Součin Matic dostaneme řešení

SOUČIN.MATIC(INVERZE(C75:K83),L75:L83)

n1;1 #MACRO? = #MACRO? CH4n2;2 #MACRO?n2;3 #MACRO?n3;1 #MACRO?n3;2 #MACRO?n3;3 #MACRO?n3;4 #MACRO?n3;5 #MACRO?

mol.s-1 m3.h-1

r1 #MACRO?

SOUČIN.SKALÁRNÍ(C19:E23)+1 9

#REF!

proud složka1 1

35

n3;5 r10 -1 00 -3 00 0 00 1 0-1 2 0

-4.26865 ### 200 0 01 0 00 0 0

Výsledkový list-Reporting

Obecné údaje o projektu:Datum:Vypracoval:Schválil:

Spalování zemního plynu

2. Popis procesu: V trubkové peci se spaluje vzdušným kyslíkem 500 m3h-1 zemního plynu (předpokládejte, že se jedná o čistý methan) při teplotě 50°C a tlaku 0,2 Mpa.Proces probíhá podle stechiometrické rovnice

CH4 + 2 O2 = CO2 + 2 H2OSuchý vzduch přichází do pece v přebytku proti stechiometricky potřebnému množství při teplotě 50oC a tlaku 0,2 MPa.

Spaliny mají obsahovat maximálně 6 % obj. CO2. Voda odchází ve formě vodní páry ve spalinách a molární průtok CH4 ve spalinách je 1,73 kmol h-1.Vypočítejte: 1. Složení (mol.%) odcházejících spalin.2. Objemový průtok (v m3h-1) vzduchu a jeho přebytek.3. Konverzi methanu podle uvedené reakce.Poznámka: Předpokládejte složení vzduchu 21 obj.% O2 a 79 obj.% N2. Konverze je podíl zreagovaného množství methanu ke vstupujícímu množství methanu.

3. Flowsheet:

1. Název projektu:

M Í S I Č

2

3

1

K O T E L

4. Zadané parametry procesu:

R 8.314 kW.s.kmol-1.K-10°C 273.15 K

referenční proud 105 °C

0.2 mPametan v odplynu 0.004 kmol/∑kmolkyslík ve vzduchu 0.21 kmol/∑kmolPřebytek vzduchu 25 %

5: Soupis proudů , složek a bloků:

molární hmotnost

Soupis - proudy Soupis - složky kg / kmol Soupis - bloky1 metan CH4 1 CH4 16.04 12 vzduch O2, N2 2 O2 323 spaliny CH4, O2, N2, CO2, H2O 3 N2 28.01

4 CO2 44.015 H2O 18.02

6: Základ výpočtu:

bilancujeme: látkové množství

7: Referenční proud:

10 0.240236 mol.s-1

Q 20 kW

8. Přepočty:

metan v odplynu 0.004 kmol/∑kmol

Přebytek kyslíku 3.75

9. Reakce, stechiometrické koeficienty reakcí::

reakce 1 CH4 + 2.O2 = CO2 + 2. H2O

Stechiometrické koeficienty stanovíme dle probíhajících reakcí a to tak, že složky výchozí (reaktanty) mají znaménko stechiometrických koeficientů minus a prudukty reakcí mají

stechiometrické koeficienty s kladnými znaménky.Steciometrické koeficienty využijeme při bilancování látkového množství v kmol.Pro bilancování hmotnosti v kg upravíme tabulků stechiometrických koeficientu vynásobením

m3.h-1

kmol.s-1

m3.h-1

příslušných molárních hmotností.

Stechiometrické koeficienty:

látkové množství hmotnost indexy pro Thermodataindex Složky

1 CH4 -1 -16.043 632 O2 -3 -63.998 343 N2 0 0 314 CO2 1 44.01 485 H2O 2 36.03 22

Pro výpočet molární entalpie složky jako funkce teploty budeme potřebovat databázi, ve které najdeme potřebné údajePro naše potřeby vystačíme s databází Thermodata

vzduchspaliny

KOTEL

vzduch

metan

spaliny

Suchý vzduch přichází do pece v přebytku proti stechiometricky potřebnému množství při teplotě 50oC a tlaku 0,2 MPa.

Spaliny mají obsahovat maximálně 6 % obj. CO2. Voda odchází ve formě vodní páry ve spalinách a molární průtok CH4 ve spalinách je 1,73 kmol h-1.

Poznámka: Předpokládejte složení vzduchu 21 obj.% O2 a 79 obj.% N2. Konverze je podíl zreagovaného množství methanu ke vstupujícímu množství methanu.

Soupis - blokykotel

Entalpická bilance

Pro každý blok máme jednu entalpickou bilanci.Pro látkové množství a blok l bude mít tvar:

Index i označuje í proudy a index j složky.Celkový počet proudů je S, celkový počet složek je C.hi;j je molární entalpie složky j při teplotě a tlaku proudu i .nrk je zdrojový proud k-té reakce a hrk je reakční entalpie této reakce.Celkový počet nezávislých reakcí je N.

Všechny členy mají rozměr kW.Pro hmotnostní bilanci bude mít entalpická bilance tvar :

kde

Nomenklatura odpovídá databázi Thermodata

Reakční teplo hr je možné vypočíst ze standardních slučovacích tepel – Hform a stechiometrických koeficientů nk;j které mají pro reaktanty záporné znaménko a pro produkty reakce znaménko kladné. Pro jednu reakci:

Pro informaci uvádíme internetovou adresu databaze DECHEMA www.ddbts.de

Pro každý blok máme tolik bilančních rovnic složek, kolik složek se vyskytuje v daném bloku.

Q je energie vyměňovaná s okolím.

·   Mj je molární hmotnost složky j

Pro entalpickou bilanci je tedy základní veličinou molární entalpie složky při dané teplotě a tlaku. Je to relativní veličina, její hodnotu vztahujeme k určitému stavu, pro který volíme entalpii složky jako nulovou. Tyto podmínky budeme nazývat podmínky standardního stavu.V našich výpočtech to bude složka chovající se jako ideální plyn při teplotě 298,15 °K. Tlak není nutné definovat neboť u ideálního plynu není entalpie funkcí tlaku.Z podmínek standardního stavu lze převést složku do konečného stavu těmito kroky:·         Ohřátím složky j z teploty standardního stavu na konečnou teplotu Ti (°K). Změna entalpie je dána následujícím vztahem:

·         Kondensací složky. V databázi se uvádí výparné teplo Hvap (kondensační teplo s opačným znaménkem) pro teplotu bodu varu. Na libovolnou jinou teplotu se přepočítá pomocí vztahu:

Tento výpočet je přibližný. Pro přesnější výpočet je nutno najít přístup k databázi obsahující data pro Cp v kapalné fázi.

·         Pro zahrnutí směšovacích a zřeďovacích tepel, tepel tání, krystalizačních tepel je nutno odkázat na specializované databáze.

V naší databázi Enthalpy Data je Hform definováno tak, že z prvků vzniká složka v plynném stavu.

∑i=1

S

incmat i ; l⋅ni⋅∑j=1

C

x i ; j⋅hi ; j+∑k=1

N

nr k⋅hr k=Q

∑i=1

S

incmat i ; l⋅mi⋅∑j=1

C

wi ; j⋅h i ; j

M j

+∑k=1

N

nrk⋅hr k=Q

hr=∑j=1

C

ν j⋅Hform j

h vap=Hvap·[ 1− TT C

1−T B

T C]0 , 374

H0

j=CpA j⋅298 ,15+CpB j

2⋅298 ,152+

CpC j

3⋅298 ,153+

CpD j

4⋅298 ,154

Δh j=CpA j⋅T i+CpB j

2⋅T

i2+

CpC j

3⋅T

i3+

CpD j

4⋅T

i4−H

0j

A internetovou adresu databáze National Bureau od Standarts webbook.nist.gov

Součástí tohoto souboru je funkce Entalpie, která využívá soubor dat Thermodata.Proto je nutné už při otevření listu zadání otevřít také soubor Thermodata Funkce entalpie má jako parametry : index (tím je definována složka

teplota °Cfáze (0 pára, plyn - 1 kapalina)

Reakční teplo hr je možné vypočíst ze standardních slučovacích tepel – Hform a stechiometrických koeficientů nk;j které mají pro reaktanty záporné znaménko a pro produkty reakce znaménko kladné. Pro jednu reakci:

Pro entalpickou bilanci je tedy základní veličinou molární entalpie složky při dané teplotě a tlaku. Je to relativní veličina, její hodnotu vztahujeme k určitému stavu, pro který volíme entalpii složky jako nulovou. Tyto podmínky budeme nazývat podmínky standardního stavu.V našich výpočtech to bude složka chovající se jako ideální plyn při teplotě 298,15 °K. Tlak není nutné definovat neboť u ideálního plynu není entalpie funkcí tlaku.

·         Ohřátím složky j z teploty standardního stavu na konečnou teplotu Ti (°K). Změna entalpie je dána následujícím vztahem:

·         Kondensací složky. V databázi se uvádí výparné teplo Hvap (kondensační teplo s opačným znaménkem) pro teplotu bodu varu. Na libovolnou jinou teplotu se přepočítá pomocí vztahu:

Tento výpočet je přibližný. Pro přesnější výpočet je nutno najít přístup k databázi obsahující data pro Cp v kapalné fázi.

·         Pro zahrnutí směšovacích a zřeďovacích tepel, tepel tání, krystalizačních tepel je nutno odkázat na specializované databáze.

∑i=1

S

incmat i ; l⋅mi⋅∑j=1

C

wi ; j⋅h i ; j

M j

+∑k=1

N

nrk⋅hr k=Q

Pro entalpickou bilanci je tedy základní veličinou molární entalpie složky při dané teplotě a tlaku. Je to relativní veličina, její hodnotu vztahujeme k určitému stavu, pro který volíme entalpii složky jako nulovou. Tyto podmínky budeme nazývat podmínky standardního stavu.

Adresa na NIST databasi Thermodata

Data je možno stáhnout z databaze v následující formě

Fe2O3 FeSolid Phase Heat Capacity (Shomate Equation) Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + Cp° = A + B*t + C*t2 + D*t3 + E/t2 E/t2

H° − H°298.15= A*t + B*t2/2 + H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H C*t3/3 + D*t4/4 − E/t + F − H

S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G E/(2*t2) + G

Cp = heat capacity (J/mol*K) Cp = heat capacity (J/mol*K)

H° = standard enthalpy (kJ/mol) H° = standard enthalpy (kJ/mol)

S° = standard entropy (J/mol*K) S° = standard entropy (J/mol*K)

t = temperature (K) / 1000. t = temperature (K) / 1000.

View plot View plotRequires a Java capable browser. Requires a Java capable browser.

Temperatur298. - 700. 700. - 1042Temperatur298. - 950. 950. - 10501050. - 2500.

A 93.43834 150.6240 110.9362 A 18.42868 -57767.65

B 108.3577 0.000000 32.04714 B 24.64301 137919.7

C -50.86447 0.000000 -9.192333 C -8.913720 -122773.2

D 25.58683 0.000000 0.901506 D 9.664706 38682.42

http://webbook.nist.gov/chemistry/form-ser.html

E -1.611330 0.000000 5.433677 E -0.012643 3993.080

F -863.2094 -875.6066 -843.1471 F -6.573022 24078.67

G 161.0719 252.8814 228.3548 G 42.51488 -87364.01

H -825.5032 -825.5032 -825.5032 H 0.000000 0.000000

t

A B C D E F GFe2O3 93.43834 108.3577 -50.86447 25.58683 -1.61133 -863.2094 161.0719Fe 18.42868 24.64301 -8.91372 9.664706 -0.012643 -6.573022 42.51488

H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H

Solid Phase Heat Capacity (Shomate Equation)

S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −

H° = standard enthalpy (kJ/mol)

S° = standard entropy (J/mol*K)

Requires a Java capable browser.

1042. - 11 1100. - 18 298. - 1809.

-325.8859 -776.7387 23.97449

28.92876 919.4005 8.367750

0.000000 -383.7184 0.000277

0.000000 57.08148 -0.000086

411.9629 242.1369 -0.000005

745.8231 697.6234 0.268027

241.8766 -558.3674 62.06336

0.000000 0.000000 7.788015

H-825.5032

0

Problem formulation

1. Task definition Solvay process of soda production

2. Subject matter:In absorption column "KOLONA" reacts a saturated water solution of kitchen salt with a gas mixture of ammonia and carbon dioxide. The reaction products are sodium bicarbonate and ammonium chloride.Due to the low solubility of bicarbonate the liquid stream forms a suspension, the solidphase being the undisolved sodium bicarbonate. Upon filtration and washing in the continuous filter "FILTR" the filter cake is transported into the rotary kiln"KALCINACE" where the bicarbonate is thermally decomposed into solid soda, carbon dioxide and water vapor

3. Flowsheet:

4. Process parameters :

salt processed 2025

Carbon dioxide surplus in feed gas stream 50rest contents of ammonia in tail gas 0.5water content of the filter cake 30

temperature of feed brine

FILTRACEKONVERZ E

2

1

4

3 5

6

7 8

9

degree of salt conversion 0.98wash water as multiple of the

n = 1 bicarbonate in filtrate corresponds to saturated solution of 0.0753saturated solution of NaCl 0.3566

5. List of Components ,Streams and Process Units

List of streams List of com List of streams

1 salt brine 1 18.02

2 feed gas 2 NaCl 58.44

3 suspension 3 44.01

4 tail gas 4 17.03

5 filtrate 5 84.01

6 wash water 6 53.49

7 filter cake 7 106

8 off gases

6. Common Basis mass flow

7.Reference Stream & Component Flows

m1;2 = 25 tons NaCl /day 0.1157

8. Recalculations

Component Concentration in Stream kg /Σkg

•salt brine feed•stream comp. kg

•1 2 35.66 ### kg/Σkg•1 1 100 ### kg

135.66•gas in

•stream comp. kmol kg•2 3 150 6602 ### kg/Σkg•2 4 100 1703 ### kg/Σkg

250 8305•tail gases

•stream comp. kmol kg•4 3 99.5 4379 ### kg/Σkg•4 4 0.5 8.52 ### kg/Σkg

100 4388•water in filter cake

•stream comp. kg•7 1 30 0.3 kg/Σkg7 5 70 0.7 kg/Σkg

filter cake water content NaHCO3

NaCl,H2O H2O

NH3,CO2

NH4CL,NaCl,NaHCO3,H2O CO2

CO2, NH3 NH3

NH4CL,NaCl,NaHCO3,H2O NaHCO3

H2O NH4Cl

NaHCO3,H2O Na2CO3

H2O, CO2

kg.s-1

kg.s-1

Relation between two Component Flows

Relation between bicarbonate and water in filtratestream comp.

5 5 = 0.0753

Relation between wash water and water in filter cakestream comp.

6 1 = 1

Relation between NaCl input and reacted NaCl (conversion)stream comp.

r1 2 = 0.016769

8. Chemical Reactions

Stoichiometric Coefficients

reaction 1 NaCl + NH3 + CO2 + H2O = NaHCO3reaction 2 2 NaHCO3 = Na2CO3

masscomponent reaction 1 reaction 2

1 -18.02 18.022 NaCl -58.44 0

3 -44.01 44.01

4 -17.03 0

5 84.01 -168.02

6 53.49 0

7 0 105.99

Now we have to arrange these data into a suitable form.

Tis process will be demonstarted on the next page

H2O

CO2

NH3

NaHCO3

NH4Cl

Na2CO3

In absorption column "KOLONA" reacts a saturated water solution of kitchen salt with

Due to the low solubility of bicarbonate the liquid stream forms a suspension, the solidphase being the undisolved sodium bicarbonate. Upon filtration and washing in the continuous filter "FILTR" the filter cake is transported into the rotary kiln"KALCINACE" where the bicarbonate is thermally decomposed into solid soda,

t/day°C% vol.% vol.%mass

FILTRACEKONVERZ E

2

1

4

3 5

6

7 8

9

Units

1 column

2 filter

3 kiln

kg/kg H2Okg/kg H2O

Process Units

comp.5 1

comp.7 1

stream comp.1 2

+ H2O

mols reaction 1 reaction 2

-1 1-1 0

-1 1

-1 0

1 -2

1 0

0 1

Prepare a questionnaire for the Incidence Matrix.

IM Incidence Matrix.process units streams

1 2 3 4 5 6 71 konverse2 filtrace

3 kalcinace

Fill it in For stream entering the process unit -put 1, for stream leaving the process unit put -1, for no incidence put 0

IM Incidence Matrix.process units streams

1 2 3 4 5 6 71 konverse 1 1 -1 -1 0 0 02 filtrace 0 0 1 0 -1 1 -1

3 kalcinace 0 0 0 0 0 0 1

Prepare a questionnaire for the Table of Data

TD Table of Datacomponents streams

1 2 3 4 5 6 71 H2O2 NaCl3 CO24 NH35 NaHCO36 NH4Cl

7 Na2CO3

… and fill it in. Do not forget stoichiometric coefficients in the reaction columns

If the component is present in the considered stream, we place 1 in the corresponding cell. Otherwise we leave the cell with 0.

TD Table of Datacomponents streams

1 2 3 4 5 6 71 H2O 1 0 1 0 1 1 12 NaCl 1 0 1 0 1 0 03 CO2 0 1 0 1 0 0 04 NH3 0 1 0 1 0 0 0

5 NaHCO3 0 0 1 0 1 0 16 NH4Cl 0 0 1 0 1 0 0

7 Na2CO3 0 0 0 0 0 0 0

How to gain important informations for setting up the Matrix of Coefficients.

We need to know the dimensions of tis square matrix, which is equal to the number of unknowns - nX.

Number of unknowns = number of reactions + SOUČIN.SKALÁRNÍ(C39:K45)nX= 2 + 20 = 22

Number of bilances.Generate the matrix BIL SOUČIN.MATIC(C39:K45,TRANSPOZICE(ABS(C16:K18)))

2 4 22 2 02 0 12 0 01 3 11 2 00 0 1

The number of non-zero elements equals the number of bilances blnc = 14

We must fix one reference stream 1The number of supplementary relations will be then 7There are only three possibilities, how to define a linear supplementary relation:

1

2

3

Any relation between the concentrations of one component in two different phases is non-linear.Poměr mezi koncentracemi jedné slozky v různých proudech je nelineární !!!

Supplementary relations are presented in following forms.

Reference Stream Component concentration.stream component flow kg/sec stream component composition

1 2 0.115741 1 2 0.262863042 3 0.794930464 4 0.001940747 1 0.3

We also need to know the number of bilance equations (denoted as blnc )

BIL =

We fix the component flow - as in the case of reference stream ¨ mi;j = c (kg.s -1)

We fix the concentration of the component in the stream mi;j = c.(mi;1 + mi;2 + …. mi;n-1 + mi;n) (kg.s -1)

We fix theflow ratio of two components mi;j = c.mr;q (kg.s-1)

Pomer toku slozekstream component ratio stream component

6 1 1 7 15 5 0.0753 5 15 2 0.02 1 2

Matrix of coefficients Linear systém, square matrix, singular matrix, rank of matrix, inverse matrix, matrix product.

Vector of righ sides B Solution of linear systém - formal notation

Application of the theory follows on soda_page2

X = A-1 x B

reactions

8 9 r1 r2

For stream entering the process unit -put 1, for stream leaving the process unit put -1, for no incidence put 0

reactions

8 9 r1 r20 0 1 00 0 0 0

-1 -1 0 1

reactions

8 9 r1 r2### ### ###### ### ###### ### ###### ### ###### ### ###### ### ###

### ### ###

If the component is present in the considered stream, we place 1 in the corresponding cell. Otherwise we leave the cell with 0.

reactions

8 9 r1 r21 0 -18.02 18.020 0 -58.44 01 0 -44.01 44.010 0 -17.03 0

0 0 84.01 -168.020 0 53.49 0

0 1 0 105.99

We need to know the dimensions of tis square matrix, which is equal to the number of unknowns - nX.

Any relation between the concentrations of one component in two different phases is non-linear.Poměr mezi koncentracemi jedné slozky v různých proudech je nelineární !!!

We fix the concentration of the component in the stream mi;j = c.(mi;1 + mi;2 + …. mi;n-1 + mi;n) (kg.s -1)

Linear systém, square matrix, singular matrix, rank of matrix, inverse matrix, matrix product.

X = A-1 x B

We form a basis for the Matrix of Coefficients. Its dimensions will be nX x nX.

0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

Meaning of numbers in line 1 : EACH STREAM HAS AS MANY COLUMNS, AS THERE ARE COMPONENTS (VALUES OF 1) IN MATRIX TD. The second line tells: WHAT COMPONENTS (Identification Number)These two lines are auxiliary for the formation of notation (names) of the unknowns - third line.

The first column :NUMBER IN CELL DENOTES THE PROCESS UNIT -SUM OF CELLS WITH THE SAME NUMBER = NUMBER OF COMPONENTS ENTERING OR LEAVING THIS PROCESS UNIT:The second column tells: WHAT COMPONENT (Identification Number)

As a result the following scheme is formed.

Row1 1 1 2 2 3 3

Column 2 1 2 3 4 1 21 2 3 m1;1 m1;2 m2;3 m2;4 m3;1 m3;21 1 0 0 0 0 0 01 2 0 0 0 0 0 01 3 0 0 0 0 0 01 4 0 0 0 0 0 01 5 0 0 0 0 0 01 6 0 0 0 0 0 0

2 1 0 0 0 0 0 02 2 0 0 0 0 0 02 5 0 0 0 0 0 02 6 0 0 0 0 0 03 1 0 0 0 0 0 03 3 0 0 0 0 0 03 5 0 0 0 0 0 03 7 0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

We generate the Matrix of Coefficients in the following way:The component 5 is present in streams 3 and 5. Both streams are incident with process unit 2 (filter).

Row1 proudy 1 1 2 2 3

Column 2 složky 1 2 3 4 11 2 3 m1;1 m1;2 m2;3 m2;4 m3;11 1 1 0 0 0 -11 2 0 1 0 0 01 3 0 0 1 0 01 4 0 0 0 1 01 5 0 0 0 0 01 6 0 0 0 0 02 1 0 0 0 0 12 2 0 0 0 0 02 5 0 0 0 0 02 6 0 0 0 0 03 1 0 0 0 0 03 3 0 0 0 0 03 5 0 0 0 0 03 7 0 0 0 0 0

0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

If the stream enters the process unit, we set the value of corresponding cell equal 1If the stream leaves the process unit, we set the value of corresponding cell equal -1Otherwise the cell keeps the original value of 0A component has contact with a certain unit by means of as many stream as is the value of the correspondig cell in matrix

0 0 0 0 00 0 0 0 00 0 0 0 0

MRank(F78:AA91)= 14

In Setting_soda we have Reference Stream 1Component Concentration 4

Relation between two Component Flows 3

The next page will present how to incorporate these data into the Matrix of Coefficients.

Rank of matrix (yellow region) must be equal to blnc.

0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0

Meaning of numbers in line 1 : EACH STREAM HAS AS MANY COLUMNS, AS THERE ARE COMPONENTS (VALUES OF 1) IN MATRIX TD.

The first column :NUMBER IN CELL DENOTES THE PROCESS UNIT -SUM OF CELLS WITH THE SAME NUMBER = NUMBER OF COMPONENTS ENTERING OR LEAVING THIS PROCESS UNIT:

3 3 4 4 5 5 5 5 6 75 6 3 4 1 2 5 6 1 1

m3;5 m3;6 m4;3 m4;4 m5;1 m5;2 m5;5 m5;6 m6;1 m7;10 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0

The component 5 is present in streams 3 and 5. Both streams are incident with process unit 2 (filter).

3 3 3 4 4 5 5 5 5 62 5 6 3 4 1 2 5 6 1

m3;2 m3;5 m3;6 m4;3 m4;4 m5;1 m5;2 m5;5 m5;6 m6;10 0 0 0 0 0 0 0 0 0

-1 0 0 0 0 0 0 0 0 00 0 0 -1 0 0 0 0 0 00 0 0 0 -1 0 0 0 0 00 -1 0 0 0 0 0 0 0 00 0 -1 0 0 0 0 0 0 00 0 0 0 0 -1 0 0 0 11 0 0 0 0 0 -1 0 0 00 1 0 0 0 0 0 -1 0 00 0 1 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0

A component has contact with a certain unit by means of as many stream as is the value of the correspondig cell in matrix BIL.

0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0

0 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0

The first column :NUMBER IN CELL DENOTES THE PROCESS UNIT -SUM OF CELLS WITH THE SAME NUMBER = NUMBER OF COMPONENTS ENTERING OR LEAVING THIS PROCESS UNIT:

7 8 8 95 1 3 7

m7;5 m8;1 m8;3 m9;7 r 1 r 20 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

7 7 8 8 91 5 1 3 7 Vektor pravých stran

m7;1 m7;5 m8;1 m8;3 m9;7 r 1 r 2 B0 0 0 0 0 -18.02 0 00 0 0 0 0 -58.44 0 00 0 0 0 0 -44.01 0 00 0 0 0 0 -17.03 0 00 0 0 0 0 84.01 0 00 0 0 0 0 53.49 0 0

-1 0 0 0 0 0 0 00 0 0 0 0 0 0 00 -1 0 0 0 0 0 00 0 0 0 0 0 0 01 0 -1 0 0 0 18.02 00 0 0 -1 0 0 44.01 00 1 0 0 0 0 -168.02 00 0 0 0 -1 0 105.99 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

Reference Streamproudstream component flowprùtok

1 2 0.115741 kg/sec

Tis information is transfered into the Matrix of Coefficients in following way:

m1;1 m1;2 m2;3 m2;4 m3;1 m3;2 ∙ ∙ ∙ ∙ ∙ ∙ r 1 r 2∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

0 1 0 0 0 0 ∙ ∙ ∙ ∙ ∙ ∙ 0 0

Component Concentrationstream component composition

3 1 0.475 Tis formulation corresponds to the following algebraic equation.

m3;1 / (m3;1 + m3;2 + m3;5 + m3;6) = 0.475

(1- 1/0.475).m3;1 + m3;2 + m3;5 + m3;6 = 0

This algebraic equation is introduced into the Matrix of Coefficients in the following way.

m3;1 m3;2 m3;5 m3;6 m4;3 m4;4 ∙ ∙ ∙ ∙ ∙ ∙ r 1 r 2∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

-1.105263 1 1 1 0 0 ∙ ∙ ∙ ∙ ∙ ∙ 0 0

Relation between two Component Flows

proud složka pomer proud složka5 5 0.0753 5 1

Transfer of tis information into the Matrix of Coefficients is very simple. Do not forget to control the signs !

m4;4 m5;1 m5;2 m5;5 m5;6 m6;1 ∙ ∙ ∙ ∙ ∙ ∙ r 1 r 2∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

0 -0.0753 0 1 0 0 ∙ ∙ ∙ ∙ ∙ ∙ 0 0

The Matrix of Cofficients completed by introducing the data from the list Setting_soda is presentedon the list soda_page4

Right sidesvector

B0000

Tis formulation corresponds to the following algebraic equation.

upon rearrangement

B r 2 B0 00 00 00 0 0

Transfer of tis information into the Matrix of Coefficients is very simple. Do not forget to control the signs !

B r 2 B0 00 0

0 0 0

Matrix of Coefficients

m1;1 m1;2 m2;3 m2;4 m3;1 m3;2 m3;5 m3;6 m4;31 0 0 0 -1 0 0 0 00 1 0 0 0 -1 0 0 00 0 1 0 0 0 0 0 -10 0 0 1 0 0 0 0 00 0 0 0 0 0 -1 0 00 0 0 0 0 0 0 -1 00 0 0 0 1 0 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 01 -2.804262 0 0 0 0 0 0 00 0 -0.257972 1 0 0 0 0 00 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 -0.016769 0 0 0 0 0 0 0

Control: Rank (Matrix of Coefficients) #MACRO?Final results are obtained as result of matrix product TRANSPOZICE((SOUČIN.MATIC(INVERZE(A4:V25),W4:W25)))

m1;1 m1;2 m2;3 m2;4 m3;1 m3;2 m3;5 m3;6 m4;30.32445317 0.1157 0.1284048 0.0331248 0.2894912 0.0023162723 0.162994 0.1037799 0.0430178

Flowsheet Data are usually presented in the following form

Flowsheet: Solvay soda processcomponents streams

1 2 3 4 5 6 71 H2O 0.3244532 0 0.2894912 0 0.2894912 0.0605123 0.06051232 NaCl 0.1157 0 0.0023163 0 0.0023163 0 03 CO2 0 0.1284048 0 0.043017768 0 0 04 NH3 0 0.0331248 0 8.364848E-05 0 0 05 NaHCO3 0 0 0.162994 0 0.0217987 0 0.14119536 NH4Cl 0 0 0.1037799 0 0.1037799 0 0

7 Na2CO3 0 0 0 0 0 0 0

m4;4 m5;1 m5;2 m5;5 m5;6 m6;1 m7;1 m7;5 m8;10 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 -1 0 0 0 1 -1 0 00 0 -1 0 0 0 0 0 00 0 0 -1 0 0 0 -1 00 0 0 0 -1 0 0 0 00 0 0 0 0 0 1 0 -10 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

-514.26835 0 0 0 0 0 0 0 00 0 0 0 0 0 -2.333333 1 00 0 0 0 0 1 -1 0 00 0.0753 0 -1 0 0 0 0 00 0 0 0 0 0 0 0 0

TRANSPOZICE((SOUČIN.MATIC(INVERZE(A4:V25),W4:W25)))

m4;4 m5;1 m5;2 m5;5 m5;6 m6;1 m7;1 m7;5 m8;18.364848E-05 0.2894912 0.0023163 0.0217987 0.1037799 0.0605123 0.0605123 0.1411953 0.0756553

8 90.0756553284 0

0 00.0369837147 0

0 00 00 0

0 0.0890685

m8;3 m9;7 r 1 r 2 B0 0 -18.02 0 00 0 -58.44 0 00 0 -44.01 0 00 0 -17.03 0 00 0 84.01 0 00 0 53.49 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 18.02 0-1 0 0 44.01 00 0 0 -168.02 00 -1 0 105.99 00 0 0 0 0.11570 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 1 0 0

m8;3 m9;7 r 1 r 20.0369837 0.0890685 0.0019402 0.0008403

Problem formulation

1. Task definition Production of powder iron - ferrum reductum

2. Subject matter:

Powder iron is produced by bringing at high temperatures into contact iron oxide and hydrogen in a REACTORBefore entering the REACTOR fresh feed, which contains besides hydrogen a small percentage of carbon dioxide,

is mixed with recycled hydrogen in a MIXER.

The ratio between fresh feed and recycled hydrogen is fixed by the reglements of production.

Process gases leaving the reactor contain besides hydrogen and carbon dioxide also water, which is removed in the

SEPARATOR.

In order to prevent accumulation of carbon dioxide, part of the recycling gas is drawn of in

SPLITTER.

3. Flowsheet:

4. Process parameters :

Production of Fe 50 kg/ směnaContent of CO2 in fresh feed 1 % Content of CO2 in the at the reactor inlet 2.5 %

7

4

3

2

9

1

REACTOR

SEPARATOR

S P L I T T E R

M I X E R

5

Ratio of the recycled hydrogen

to the hydrogen stream in fresh feed 4 : 1

5. List of Components ,Streams and Process Units

List of streams List of components

kg /kmol

1 iron oxide 1 2.01

2 product Fe 2 44.01

3 tail gas 3 18.01

4 water 4 Fe 55.85

5 dry tail gas 5 159.70

6 bleed

7 recycle

8 fresh hydrogen

9 process gas

6. Comm 7. Common 8. Comm 9. Comm 10. Com 11. Com 12. Common Basis

7.Referen 7.Reference 7.Referen 7.Referen 7.Referen 7.Referen 7.Reference Stream & Component Flows

8. Recalculations

Component Concentration in Stream

stream component kmol mol/Σmol

8 1 99.0 0.99

8 2 1.0 0.01

100.0

stream component kmol mol/Σmol

9 1 97.5 0.975

9 2 2.5 0.025

100.0

Relation between two Component Flows

Relation between fresh hydrogen and recycle hydrogen

stream comp. comp.

Fe2O3 H2

CO2

H2, CO2, H2O H2O

H2O

H2, CO2 Fe2O3

H2, CO3

H2, CO4

H2, CO5

H2, CO6

7 1 = 4 8 1

8. Chemical Reactions

reaktanty produkty reakce

Stoichiometric Coefficients

Stoichiometric coefficients are defined in the following way:

stechiometric coefficients of reactants have a minus sign and reaction products have a plus sign.

single stechiometric coefficients are used in mol bilances.

In the case of mass balances we must multiply the stoichiomeric coefficients by corresponding mol masses.

mol - balance mass - balance

components

1 -3 -6.03

2 0 0

3 3 54.034 Fe 2 111.7

5 -1 -159.7

Fe2O3 + 3· H2 = 3· H2O + 2· Fe

H2

CO2

H2O

Fe2O3

Powder iron is produced by bringing at high temperatures into contact iron oxide and hydrogen in a REACTORBefore entering the REACTOR fresh feed, which contains besides hydrogen a small percentage of carbon dioxide,

Process gases leaving the reactor contain besides hydrogen and carbon dioxide also water, which is removed in the

kg/ směnaobjemovéobjemové

6

8

List of process units

1 reactor

2 separator

3 splitter

4 mixer

7.Reference Stream & Component Flows

In the case of mass balances we must multiply the stoichiomeric coefficients by corresponding mol masses.

As the first step we put down the basic parameters defined in the list Seting_Fenumber of streams 9number of chemical reactions 1number of process units 4number of components 5

Respecting the recommended form, we put down the IM matrix ( incidence matrix) and the TD matrix(data table)

IM proces Incidence matrixunits streams

1 2 3 4 5 6 7 81 reactor 1 -1 -1 0 0 0 0 02 separator 0 0 1 -1 -1 0 0 03 splitter 0 0 0 0 1 -1 -1 0

4 mixer 0 0 0 0 0 0 1 1

TD proces Data tableunits streams

1 2 3 4 5 6 7 81 H2 0 0 1 0 1 1 1 12 CO2 0 0 1 0 1 1 1 13 H2O 0 0 1 1 0 0 0 04 Fe 0 1 0 0 0 0 0 0

5 Fe2O3 1 0 0 0 0 0 0 0

Scalar product of the matrix TD + number of reactions gives the number of unknowns SOUČIN.SKALÁRNÍ(C21:K25)+1 17

Matrix product TD x IM will help us to determine the number of balance euations. SOUČIN.MATIC(C21:K25,TRANSPOZICE(ABS(C13:K16)))

2 2 3 32 2 3 31 2 0 01 0 0 01 0 0 0

Balanc equations = number of non zero elements. 12

Process data enable us to chose the refernce stream.

Reference stream. stream componentflow

2 4 3.108525 mol/sec

further we can define: 2 component concentrations1 relation between two component flows

Component Concentration Relation between two Component Flows

stream componentcomposition stream component ratio8 2 0.01 mol/Σmol 7 1 49 2 0.025 mol/Σmol

17 x 17consisting of 12 rows of balance equations

1 reference stream2 rows of component concentrations1 ratio of component flow

If we follow strictly the recommended procedure, we will generate a matrix , which is identic with the matrix shown on the next lines. 1 2 3 3 3 4 5 55 4 1 2 3 3 1 2

n1;5 n2;4 n3;1 n3;2 n3;3 n4;3 n5;1 n5;21 1 0 0 -1 0 0 0 0 01 2 0 0 0 -1 0 0 0 01 3 0 0 0 0 -1 0 0 01 4 0 -1 0 0 0 0 0 01 5 1 0 0 0 0 0 0 02 1 0 0 1 0 0 0 -1 02 2 0 0 0 1 0 0 0 -12 3 0 0 0 0 1 -1 0 03 1 0 0 0 0 0 0 1 03 2 0 0 0 0 0 0 0 14 1 0 0 0 0 0 0 0 04 2 0 0 0 0 0 0 0 0

ref.stream 0 1 0 0 0 0 0 0CO2 in stream 8 0 0 0 0 0 0 0 0CO2 in stream 9 0 0 0 0 0 0 0 0stream7/stream8 0 0 0 0 0 0 0 0supplementary 0 0 1 0 0 0 0 0

Rank of matrix ###

Supplementary relation 1 We place a new vector in the column onthe left of right sides vector. The new vector has 1 in the last row, the rest are zeros.

2 The supplementary line in matrix A ha only zeros. We place 1 in an arbitrary cell.3 We test (rank of matrix) the matrix on singularity. 4 In case of singularity try to place 1 elsewhere.

The right side is not represented by a vector, but by a matrix having two columns. The solution has also the form of a two column matrix and not a vector.

Next list Fe_page2 will show tis procedure in detail.

Anhand already learned procedure we build a square matrix of coefficients nX x nX

The solution may be presented formally as X = A-1 x B

Respecting the recommended form, we put down the IM matrix ( incidence matrix) and the TD matrix(data table)

reactions

9 r11 10 00 0

-1 0

reactions

9 r11 -31 00 30 2

0 -1

stream component8 1

If we follow strictly the recommended procedure, we will generate a matrix , which is identic with the matrix shown on the next lines. 6 6 7 7 8 8 9 91 2 1 2 1 2 1 2

n6;1 n6;2 n7;1 n7;2 n8;1 n8;2 n9;1 n9;2 r10 0 0 0 0 0 1 0 -30 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

-1 0 -1 0 0 0 0 0 00 -1 0 -1 0 0 0 0 00 0 1 0 1 0 -1 0 00 0 0 1 0 1 0 -1 00 0 0 0 0 0 0 0 00 0 0 0 1 -99 0 0 00 0 0 0 0 0 1 -39 00 0 -1 0 4 0 0 0 00 0 0 0 0 0 0 0 0

We place a new vector in the column onthe left of right sides vector.

The supplementary line in matrix A ha only zeros. We place 1 in an arbitrary cell.

0 00 00 00 00 00 00 00 00 00 00 00 00 3.1085250 00 00 01 0

As result of solution e do not get a number x = a, but a linear function x = C.a + b

If we chose next number as C 0.5 then we get as solution the yellow marked vectorn1;5 1.554262 0 1.554262 according to the formula (first line) n2;4 3.108525 0 3.108525n3;1 0.5 1 0n3;2 0.132379 0.025641 0.119559n3;3 4.662787 0 4.662787n4;3 4.662787 0 4.662787n5;1 0.5 1 0n5;2 0.132379 0.025641 0.119559n6;1 -3.63023 0.2 -3.73023n6;2 0.01043 0.00202 0.00942n7;1 4.13023 0.8 3.73023n7;2 0.121949 0.023621 0.110139n8;1 1.032557 0.2 0.932557n8;2 0.01043 0.00202 0.00942n9;1 5.162787 1 4.662787n9;2 0.132379 0.025641 0.119559r1 1.554262 0 1.554262

Now we must find such a value of constat C that would set the objective function to zero.Tis objective function expresses the condition that mol fractions of CO2 are the same in streams 5,6 and 7. The objective function might be written in tis form Objective function

n5;2/(n5;1 + n5;2) - n7;2/(n7;1 + n7;2) = 0 0.180656

For finding such a value of C that sets the objective function equal to zero we apply the buillt in function SOLVER ( Řešitel)Is to be found if you go to menu Data and open the window Analyza.

a and b are columns (vectors) of the solution matrix ans C is an arbitrary conszant.

1*E5+D5*$D$4

For finding such a value of C that sets the objective function equal to zero we apply the buillt in function SOLVER ( Řešitel)

List of Results -Reporting

General information dataDatum:Presented by:Approved by :

1. Title of the project: Combustion of power-gas

2. Subject matter: As a source of energy for heating a family house serves a pipe ovenwhere power-gas is mixed with air and burned.(assume, that power-gas is pure CH4 )Proces of combustion runs according the following stoichiometric equation

CH4 + 2 O2 = CO2 + 2 H2ODry air comes into the oven in surplus compared with the stoichiometry of the process.

Combuston is not perfect, flue gases contain traces of unburned power-gas.

3. Flowsheet:

4. Process parameters : R 8.314 kW.s.kmol-1.K-10°C 273.15 K

M Í S I Č

3

2

1

K E T T L E

reference stream:Q 20 kW

CH4 in fkue gases 0.004 kmol/∑kmolO2 in air 0.21 kmol/∑kmolair surplus 25 %temperature stream 1 5 °Ctemperature stream 2 -15 °Ctemperature stream 3 150 °C

5. List of Components ,Streams and Process Units

List of streams List of components Process

1 gas CH4 1 CH4 16.04 12 air O2, N2 2 O2 323 flue gases CH4, O2, N2, CO2, H2O 3 N2 28.01

4 CO2 44.015 H2O 18.02

6. Common Basis mol flow kmol.s-1

7.Reference Stream & Component Flows

Q 20 kW

8. Recalculations

Component Concentration in Stream

stream component3 4 0.004 kmol/∑kmol

Relation between two Component Flows Přebytek kyslíku

stream comp. stream comp.

2 2 = 3.75 1 1

9. Chemical Reactions

reactants products

Stoichiometric Coefficients

Stoichiometric coefficients are defined in the following way:

stechiometric coefficients of reactants have a minus sign and reaction products have a plus sign.

single stechiometric coefficients are used in mol bilances.

CH4 + 2· O2 = 2· H2O + CO2

In the case of mass balances we must multiply the stoichiomeric coefficients by corresponding mol masses.

Stechiometric coefficients:

mols mass Thermodata indexesindex Složky

1 CH4 -1 -16.043 632 O2 -2 -64 343 N2 0 0 314 CO2 1 44.01 485 H2O 2 36.03 22

For calculation of molar enthalpies of individual components as a function of temperature we will use a suitablae data-base where we could find the necessary information.For our purposes we will use the data-base Thermodata.

Now we have to arrange available data into a suitable form.

Tis process will be demonstarted on the next page

As a source of energy for heating a family house serves a pipe ovenwhere power-gas is mixed with air and burned.

Units

KETTLE

As the first step we put down the basic parameters defined in the list Seting_Fenumber of streams 3number of chemical reactions 1number of process units 1number of components 5

Respecting the recommended form, we put down the IM matrix ( incidence matrix) and the TD matrix(data table)

IM proces Incidence matrixunits streams reactions

1 2 3 r11 kotel 1 1 -1 1

TD proces Data tableunits streams reactions

1 2 3 r1

1 CH4 1 0 1 -1

2 O2 0 1 1 -2

3 N2 0 1 1 0

4 CO2 0 0 1 1

5 H2O 0 0 1 2

Scalar product of the matrix TD + number of reactions gives the number of unknowns SOUČIN.SKALÁRNÍ()+1

Matrix product TD x IM will help us to determine the number of balance euations. SOUČIN.MATIC(C21:K25,TRANSPOZICE(ABS(C13:K16)))

22211 Balance equations = number of non zero elements.

Enhtalpy of components kJ/molindex values components streams reactions

1 2 3 r163 CH4 1 0 1 -134 O2 0 1 1 -231 N2 0 1 1 048 CO2 0 0 1 1

22 H2O 0 0 1 2teplota °C 5 -15 150 Hr1

Enhtalpy of components kJ/mol

index values components streams reactions

1 2 3 r1

63 CH4 Err:511 ### ### ###

34 O2 #MACRO? ### ### ###

31 N2 #MACRO? ### ### ###

48 CO2 #MACRO? ### ### ###22 H2O #MACRO? ### ### ###

Temperature °C 5 -15 150 Hr1###

Anhand already learned procedures we can define :2 Component Concentration

1 Relation between two Component Flows

Component Concentration Relation between two Component Flows

stream component composition stream component2 2 0.21 mol/Σmol 2 23 1 0.004 mol/Σmol

Matrix of Coefficient1 2 2 3 3 31 2 3 1 2 3

n1;1 n2;2 n2;3 n3;1 n3;2 n3;31 1 1 0 0 -1 0 01 2 0 1 0 0 -1 01 3 0 0 1 0 0 -11 4 0 0 0 0 0 01 5 0 0 0 0 0 0

Enthalpy -0.699888927 -1.169106 -1.168024 -4.884534 -3.735451 -3.651651O2 in steam 2 0 -5.761905 1 0 0 0CH4 in stream 3 0 0 0 -249 1 1surplus O2 3.75 -1 0 0 0 0

Control - Rank of matrix 9

For obtaining the solution we apply the EXCEL function SOUČIN.MATIC(INVERZE(C75:K83),L75:L83)

n1;1 -0.023615673 mol.s-1 = -1.904368 m3.h-1 CH4n2;2 -0.088558775n2;3 -0.510267229n3;1 -0.002404924n3;2 -0.024926526n3;3 -0.510267229n3;4 -0.02121075

n3;5 -0.042421499r1 -0.02121075

Respecting the recommended form, we put down the IM matrix ( incidence matrix) and the TD matrix(data table)

9

5

#REF!

Relation between two Component Flows

Relation between two Component Flows

component ratio stream component3.75 1 1

3 34 5

n3;4 n3;5 r10 0 -1 00 0 -3 00 0 0 0

-1 0 1 00 -1 2 0

-4.968694 -4.26865 -802.861 200 0 0 01 1 0 00 0 0 0

SOUČIN.MATIC(INVERZE(C75:K83),L75:L83)

Problem formulation

1. Task definition Reactor for Manufacture of H2SO4

2. Subject matter:Provide data for design of the first stage of a reactor for sulphuric acid production.Desired values of

adiabatic temperatureconversion

for a given catalyst ignition temperatureentering gas compositionoverall pressure

3. Flowsheet:

4. Process parameters :

Composition of the gas on entering the reactor: The outlet is in agreement with chemical balance.SO2 0.06O2 0.15N2 0.790SO3 0.000

693.0 ° K

5. List of Components ,Streams and Process Units

List of streams List of components

molar mass

1 roasting gas 64.06

2 outlet from reactor 32.00

28.01

80.06

Input Stream Temperature T0 =

where T2 is Output Stream Temperature.

SO2,SO3,O2,N2 1 SO2

SO2,SO3,O2,N2 2 O2

3 N2

4 SO3

2

1

R E A C T O R

G43
Molar Mass: molar mass - "molecular mass" kg·kmol-1

6. Common Basis mol balance

7.Reference Stream & Component Flows

stream component

1 1 ´ = 1

8. Recalculations

Component Concentration in Stream

stream component1 1 0.06 mol/Σmol

2 2 0.15 mol/Σmol3 3 0.79 mol/Σmol4 4 0 mol/Σmol

9. Chemical Reactions

Stoichiometric Coefficients

Stoichiometric coefficients are defined in the following way:

stechiometric coefficients of reactants have a minus sign and reaction products have a plus sign.

single stechiometric coefficients are used in mol bilances.

In the case of mass balances we must multiply the stoichiomeric coefficients by corresponding mol masses.

reactants products of reaction

Stechiometric coefficients:

Thermodata indexes component mols mass

35 1 -1 -64.06

34 2 -0.5 -16

31 3 0 0

37 4 1 80.06

mol.s-1

mol.s-1

SO2 + 1/2 O2 = SO3

SO2

O2

N2

SO3

G71
Number of Independent Reactions: Only independent reactions can be included in balancing. If there is a greater number of reactions taking place in the block and if we are not totally sure which ones of them are independent, we can establish their number by determining the rank of the transposed matrix of stoichiometric coefficients. The procedure is described in detail in the text.

The outlet is in agreement with chemical balance.

Process Units

1 reactor

In the case of mass balances we must multiply the stoichiomeric coefficients by corresponding mol masses.

As the first step we put down the basic parameters defined in the list Seting_reactor

number of streams 2 0°C =number of chemical reactions 1number of process units 1number of components 4

Respecting the recommended form, we put down the IM matrix ( incidence matrix) and the TD matrix(data table)

IM proces Incidence matrixunits streams reactions

1 2 r1

1 kotel 1 -1 1

TD Data tablestreams reactions

components 1 2 r11 SO2 1 1 -12 O2 1 1 -0.53 N2 1 1 0

4 SO3 0 1 1

Enhtalpy of components kJ/molstreams reactions

index values components 1 2 r1

35 SO2 Err:511 Err:511 Err:511

34 O2 Err:511 Err:511 Err:511

31 N2 Err:511 Err:511 Err:51137 SO3 Err:511 Err:511 Err:511

Temperature °C 420 775.7663 Hr1Err:511

Scalar product of the matrix TD + number of reactions gives the number of unknowns SOUČIN.SKALÁRNÍ()+1

Matrix product TD x IM will help us to determine the number of balance euations. SOUČIN.MATIC(C21:K25,TRANSPOZICE(ABS(C13:K16)))

222

1 Balance equations = number of non zero elements.

Anhand already learned procedures we can define :

1 Reference Stream2 Component Concentration

4 Balance Equations

Sum 7Unknowns 8Degrees of Freedom 1

Reference Streamstream component flow

1 1 1

Component Concentration

stream component composition1 1 0.06 mol/Σmol1 2 0.15 mol/Σmol

Matrix of Coefficient

3 1 2 3n1;1 n1;2 n1;3 n2;1 n2;2 n2;3

component 1 1 0 0 -1 0 02 0 1 0 0 -1 03 0 0 1 0 0 -14 0 0 0 0 0 0

reference stream 1 0 0 0 0 0SO2 in stream 1 -1 0 0.07594936709 0 0 0

O2 in stream 1 0 -1 0.18987341772 0 0 0enthalpic balance Err:511 Err:511 Err:511 Err:511 Err:511 Err:511

Control - Determinant Err:511By applying the EXCEL formula TRANSPOZICE(SOUČIN.MATIC(INVERZE(C69:J76),L69:L76)) we get the solution

n1;1 n1;2 n1;3 n2;1 n2;2 n2;3Err:511 Err:511 Err:511 Err:511 Err:511 Err:511

For a chosen temperature of the stream 2 we obtain the solution.

mol.s-1

Knowing the emperature and composition of the stream 2, we proceed by calculating both expresssions for K

= Err:511

where X = r1/n1;1n2 = Σn2;i

objective function = ABS(K(X) - K(T)) Err:511 Target value

temperature t2 is the variable parameter D32 We are ready for SOLVER

K ( X )=X⋅n

20,5

nx2 ; 1⋅nx2 ; 20,5

K (T )=exp(11524 , 4

T−10 , 92 )

273.15 K

Respecting the recommended form, we put down the IM matrix ( incidence matrix) and the TD matrix(data table)

8

4

4n2;4 r1

0 -1 00 -0.5 00 0 0

-1 1 00 0 10 0 0

0 0 0Err:511 Err:511 0

By applying the EXCEL formula TRANSPOZICE(SOUČIN.MATIC(INVERZE(C69:J76),L69:L76)) we get the solution

n2;4 r1Err:511 Err:511

Knowing the emperature and composition of the stream 2, we proceed by calculating both expresssions for K

= 1.069251

We are ready for SOLVER

K (T )=exp(11524 , 4

T−10 , 92 )

1. Task definition

Continuous Stirred Tank Reactor with Recycle Stream

2. Subject matter:

Economic analysis of a stirred tank reactor with recycle

3. Flowsheet:

4. Process parameters :

density rho 900 kg.m-3mean residence time t 20 hours

T 360 Kreaction coefficient k1 0.388577 hour-1reaction coefficient k2 0.006009 hour-1production of B 50000 tons.year-1

5. List of Components ,Streams and Process Units

List of Streams: List of Components: kg.kmol-11 feed A 1 A 200

REAKTOR

1 2 4

SEPARATOR

5

3

2 mixture A;B;C 2 B 2003 pure B B 3 C 2004 pure C C5 recycle A

6. Common Basis Molar Balance:

7.Reference Stream & Component Flows

stream component

3 2 = 50000

= 8.68055556

recycle 5 1 10

8. Recalculations

Basis of Calculation and Conversion of Specified Flows and CompositionsConversion: does not take place

9. Chemical Reaction, Determination of Number of Independent Chemical Reactions

Reaction 1 Reaction 2 Stoichiometric A = B B = C Coefficients of Reactions:

component r 1 r 2A -1 0B 1 -1C 0 1

Incidence Matrixstream reactor separator

1 21 1 02 -1 13 0 -14 0 -15 1 -1

r1 1 0

tons.year-1

mol.s-1

mol.s-1

r2 1 0

Specification Table and Matrix of Coefficients

Specification Table:

component stream number reactionnode number name 1 2 3 4 5 r1

n1 n2 31.25 n4 n5 nr11 1 A 1 nx2;1 0 0 1 -11 2 B 0 nx2;2 1 0 0 11 3 C 0 nx2;3 0 0 0 02 1 A 0 nx2;1 0 0 1 02 2 B 0 nx2;2 1 0 0 02 3 C 0 nx2;3 0 1 0 0

number of real streams 5 balance equations in node 1 number of independent chemical reactions 2 balance equations in node 2number of unknown compositions in stream 3 sum equations (stream 2)total sum of unknowns 10 streams with fixed flows

headingssum number of rows

total number of unknowns + one column represum of unknowns + 1 = number of columns equations missing

missing equations may be represented by the mathematical models of the two reactions taking place in the reactor

for the CSTR (continuous stirred tank reactor) we have

reaction r1 nx2;1.(1+k1.t) - n2 = 0 where (1+k1.t) = 8.771537

reaction r nx2;2.(1+k2.t) - n2 + nx2;1 = 0 where (1+k2.t) = 1.120177

Matrix of Coefficients:Matrix generated by the Transform function is supplemented bytwo last lines represent additional relations - chemical reactions r1 and r2 for CSTR

n1 n2 n3 n4 n5 nr1 nr2 n2;1A 1 0 0 0 1 -1 0 -1B 0 0 0 0 0 1 -1 0C 0 0 0 0 0 0 1 0A 0 0 0 0 -1 0 0 1B 0 0 -1 0 0 0 0 0C 0 0 0 -1 0 0 0 0

sum 0 1 0 0 0 0 0 -1n3 0 0 1 0 0 0 0 0reaction r1 0 -1 0 0 0 0 0 8.7715reaction r2 0 -1 0 0 0 0 0 1

Solving a System of Equations Using Methods of Linear Algebra, with the Advantage of Using Excel

Vector of Solutions:

kmol.hod-1n1 n2 nx2;1 nx2;2 nx2;3 n3 n4 n5 nr1

35.01 39.51 31.25 3.76 4.5 35.01 3.76 4.5 31.259.725 10.975 8.680556 1.044444 1.25 9.725 1.044444 1.25 8.680556

kg.hod-1m1 m2 mw2;1 mw2;2 mw2;3 m3 m4 m5 mr1

7001.1 7902 6250 751.1 900.9 7001.1 751.1 900.9 6250

mass fractions w2;1 w2;2 w2;3in stream 2 0.791 0.095 0.114

reactor volume V 175.6 m3

Target function

throughput 7902 kg.hour-1output of B 751.1 kg.hour-1

mean residence time 20 hourraw material cost 10501.7 $.hour-1 84.013 106 $/yearmarket value of C 225.3 $.hour-1 1.803 106 $/yearprocess costs 2212.6 $.hour-1 17.7 106 $/yearrate of depreciation:- reactor 202.9 $.hour-1 1.623 106 $/yearrate of depreciation:-separator 336.1 $.hour-1 2.689 106 $/year

process costs F 13478.5 $.hour-1 104.223 106 $/year

t hours F T K1 16272.8 3602 14099.13 13426.64 13129.45 12982.46 12910.47 12881.28 12878.99 12894.5

10 12922.611 12959.7

12 13003.713 1305314 13106.415 1316316 13222.417 13283.918 13347.319 13412.320 13478.5

Process Units

1 reactor R

2 separator S

r2

nr20

-11000

3311199

112

missing equations may be represented by the mathematical models of the two reactions taking place in the reactor

n2;2 n2;3 vps0 0 0

-1 0 00 -1 00 0 01 0 00 1 0

-1 -1 00 0 31.250 0 0

1.1202 0 0

nr23.76

1.044444

mr2751.1

Target Function Dataproduction of B 50000price of raw material 1.5 $/kgvalue of refuse C 0.3 $/kg

reactor - investment costs 500000reactor- process costs 0.08 $ per 1 kg of reactor throughputseparator - investment costs 13250separator - process costs 0.2 $ per 1 kg of separator throughput

reactor volume V total throughput (input + recycle)Wprocess time capacity 8000

tons.year-1

.V0,6 $

.W0,6 $

m3

tons.year-1

hours.year-1

As the first step we put down the basic parameters defined in the list Seting_reactor

number of streams 5number of chemical reactions 2number of process units 2number of components 3

Respecting the recommended form, we put down the IM matrix ( incidence matrix) and the TD matrix(data table)

IM proces Incidence matrixunits streams

1 2 3 4 51 reaktor 1 -1 1 0 0

2 separator 0 1 -1 -1 -1

TD Data tablecomponents streams

component 1 2 3 4 51 A 1 1 0 0 12 B 0 1 1 0 0

3 C 0 1 0 1 0

Scalar product of the matrix TD + number of reactions gives the number of unknowns SOUČIN.SKALÁRNÍ()+2

Matrix product TD x IM will help us to determine the number of balance euations. SOUČIN.MATIC(C21:K25,TRANSPOZICE(ABS(C13:K16)))

2 22 21 2

Balance equations = number of non zero elements.

Application of already learned procedures enables us to define :follwing information :

1 Reference Stream6 Balance Equations

Sum 7Unknowns 9Degrees of Freedom 2

For every degree of freedom (nonlinear additional condition) we add to the left side of vector vrs a vector of zeros.Thus arrizes a matrix B, having (degrees of freedom + 1) columns

Matrix of Coefficients is set up in the usual manner:

We have the vector of right sides v.r.s.. It contains only zeros with the exception of the line for reference stream.

balance equation for each component passing into the balanced process unitreference streamlinear equations for component flow, stream composition and relation between twi component flows.

There remain empty(only zeros) as many rows as freedom degreesStarting with the first empty row we choose at random a cell and substitute zero for oone.Starting from the right, we find the first empty column (zeros only) of matrix B and we substitute in the same row zero for one.We have to check the rank of matrix in order to avoid singularity.

Matrix of Coefficientsn 1;1 n2;1 n2;2 n2;3 n3;2

1; 1 1 -1 0 0 01; 2 0 0 -1 0 01; 3 0 0 0 -1 02; 1 0 1 0 0 02; 2 0 0 1 0 -12; 3 0 0 0 1 0

ref.stream n1;1 0 0 0 0 1stream n5;1 0 0 0 0 0

0 0 0 1 0

Rank #MACRO?n 1;1 n2;1 n2;2 n2;3 n3;2 n4;3

0°C = 273.15 K

Respecting the recommended form, we put down the IM matrix ( incidence matrix) and the TD matrix(data table)

reactions

r1 r21 1

0 0

reactions

r1 r2-1 01 -1

0 1

9

6

For every degree of freedom (nonlinear additional condition) we add to the left side of vector vrs a vector of zeros.

. It contains only zeros with the exception of the line for reference stream.

linear equations for component flow, stream composition and relation between twi component flows.

Bn4;3 n5;1 r1 r2

0 1 -1 0 0 00 0 1 -1 0 00 0 0 1 0 00 -1 0 0 0 00 0 0 0 0 0-1 0 0 0 0 00 0 0 0 0 8.6805560 1 0 0 0 100 0 0 0 1 0

n5;1 r1 r2

Target Function Dataproduction of B 50000price of raw material 1.5 $/kgvalue of refuse C 0.3 $/kg

reactor - investment costs 500000reactor- process costs 0.08 $ per 1 kg of reactor throughputseparator - investment costs 13250separator - process costs 0.2 $ per 1 kg of separator throughput

reactor volume V total throughput (input + recycle)Wprocess time capacity 8000

tons.year-1

.V0,6 $

.W0,6 $

m3

tons.year-1

hours.year-1

Continuous Stirred Tank Reactor with Recycle Stream

Process Basis and Data Available with Respect Thereto

density rho 900

mean residence time t 7.312 hourT 359.94 K

reaction coefficient k1 0.386773reaction coefficient k2 0.005975production of B 50000

Process Flow Sheet

List of Components, Streams and Blocks.

List of Streams: List of Components:

1 feed A 1 A 200.00

2 mixture A;B;C 2 B 200.00

3 pure B B 3 C 200.00

4 pure C C5 recycle A

List of Blocks

1 reactor R2 separator S

Basis of Calculation and Conversion of Specified Flows and Compositions

Molar Balance: Reference Stream: n3 = 31.25

Conversiondoes not take place

kg.m-3

hour-1

hour-1

tons.year-1

kg.kmol-1

kmol.h-1

1

2

3

4

55

R SR

B46
Mass Balance - Molar Balance: It is practicable to balance amount of matter (molar balance) only if molar mass can be attributed to all components.
E46
Reference Stream: Balancing is practicable only if at least one flow is known in the system being balanced. If this numerical entry is missing in the specification, we must fix a randon numerical value for one (reference) stream.
A48
Conversion: All data of the specification must be converted to a uniform basis. Molar Balance: flow kmol/s composition mole fraction Mass Balance: flow kg / s composition weight fraction SI System is expedient if followed by enthalpy balance - energy flows are then obtained directly in kW - otherwise we can choose any basis for the flow - for instance, tons/year or g/hour.

Chemical Reaction, Determination of Number of Independent Chemical Reactions

Reakce 1 Reaction 2 Stoichiometric

A = B B = C Coefficients of Reactions:

component r 1 r 2A -1 0B 1 -1C 0 1

Incidence Matrix

stream reactor separator

1 21 1 02 -1 13 0 -14 0 -15 1 -1

r1 1 0r2 1 0

Specification Table and Matrix of Coefficients

Specification Table:

component stream nmb reactionnode number name 1 2 3 4 5 r1 r2

31.251 1 A 1 nx2;1 0 0 1 -1 01 2 B 0 nx2;2 1 0 0 1 -11 3 C 0 nx2;3 0 0 0 0 12 1 A 0 nx2;1 0 0 1 0 02 2 B 0 nx2;2 1 0 0 0 02 3 C 0 nx2;3 0 1 0 0 0

number of real streams 5 balance equations in node 1 3number of independent chemical reactions 2 balance equations in node 2 3number of unknown compositions in stream 3 sum equations (stream 2) 1total sum of unknowns 10 streams with fixed flows 1

headings 1sum 9

number of rows 9total number of unknowns + one column represum of unknowns + 1 number of columns 11

equations missing 2

n1 n2 n4 n5 nr1 nr2

H53
Number of Independent Reactions: Only independent reactions can be included in balancing. If there is a greater number of reactions taking place in the block and if we are not totally sure which ones of them are independent, we can establish their number by determining the rank of the transposed matrix of stoichiometric coefficients. The procedure is described in detail in the text.
B73
Specification Table: The exact procedure of how to draw up a specification table is described in the text. The number of unknowns is given by the number of cells having different alphanumerical designations. There are 7 in our case. Balance relations apply to 4 components. The condition of the total of weight fractions of all components being equal to 1 is the additional relation for the streams No. 3. For the system to be solvable we need two more additional relations. The text talks in greater detail of cases in which a system is solvable and how to proceed if a system is overdetermined or if the additional relationships are non-linear.
I77
Reaction: The Component rows in the Reaction column show: stoichiometric coefficients in the case of molar balance and products of stoichiometric coefficients and molar masses in the case of mass balance.

missing equations may be represented by the mathematical models of the two reactions taking place in the reactor

reaction r1 where 3.828124

reaction r where 1.043693

Matrix of Coefficients:

#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?A #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?B #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?C #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?A #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?B #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?C #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?sum #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?

#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?reaction r1 0 -1 0 0 0 0 0 3.8281 0reaction r2 0 -1 0 0 0 0 0 1 1.0437

Solving a System of Equations Using Methods of Linear Algebra, with the Advantage of Using Excel

Vector of Solutions:

#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?

#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?

mass fractionsin stream 2 #NAME? #NAME? #NAME?

reactor volume V #NAME?

Target function

throughput #NAME?

output of B #NAME?

mean residence time 7.312 hour

for the CSTR (continuous stirred tank reactor) we have

nx2;1.(1+k1.t) - n2 = 0 (1+k1.t) =

nx2;2.(1+k2.t) - n2 + nx2;1 = 0 (1+k2.t) =

Matrix generated by the Transform function is supplemented bytwo last lines represent additional relations - chemical reactions r1 and r2 for CSTR

n3

kmol.hod-1

n1 n2 nx2;1 nx2;2 nx2;3 n3 n4 n5 nr1 nr2

kg.hod-1

m1 m2 mw2;1 mw2;2 mw2;3 m3 m4 m5 mr1 mr2

w2;1 w2;2 w2;3

m3

kg.hour-1

kg.hour-1

J123
The corresponding formula: transpose(mmultipl(inverse(matrix of coefficients);vrs)) matrix must be square press Shift+Ctrl + Enter

raw material cost #NAME? #NAME?

market value of C #NAME? #NAME?

process costs #NAME? #NAME?

rate of depreciation:- reactor 202.9 1.623

rate of depreciation:-separator 336.1 2.689

process costs #NAME? #NAME?

Application of Solver

minimum process cos #NAME?Equal toBy changing cells t D6

T D7

optimum values t 7.312 hoursT 359.94 K

$.hour-1 106 $/year$.hour-1 106 $/year$.hour-1 106 $/year$.hour-1 106 $/year$.hour-1 106 $/year

$.hour-1 106 $/year

$.hour-1

Min

missing equations may be represented by the mathematical models of the two reactions taking place in the reactor

#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?

#NAME? #NAME?0 00 0

Plug Flow Reactor with Recycle Stream

Process Basis and Data Available with Respect Thereto

density rho 900

mean residence time t 7.312 hourT 359.94 K

reaction coefficient k1 0.386773reaction coefficient k2 0.005975production of B 50000

Process Flow Sheet

List of Components, Streams and Blocks.

List of Streams: List of Components:

1 feed A 1 A 200.00

2 mixture A;B;C 2 B 200.00

3 pure B B 3 C 200.00

4 pure C C5 recycle A

List of Blocks

1 reactor R2 separator S

Basis of Calculation and Conversion of Specified Flows and Compositions

Molar Balance: Reference Stream: n3 = 31.25

Conversiondoes not take place

kg.m-3

hour-1

hour-1

tons.year-1

kg.kmol-1

kmol.h-1

1

2

3

4

55

R SR

B46
Mass Balance - Molar Balance: It is practicable to balance amount of matter (molar balance) only if molar mass can be attributed to all components.
E46
Reference Stream: Balancing is practicable only if at least one flow is known in the system being balanced. If this numerical entry is missing in the specification, we must fix a random numerical value for one (reference) stream.
A48
Conversion: All data of the specification must be converted to a uniform basis. Molar Balance: flow kmol/s composition mole fraction Mass Balance: flow kg / s composition weight fraction SI System is expedient if followed by enthalpy balance - energy flows are then obtained directly in kW - otherwise we can choose any basis for the flow - for instance, tons/year or g/hour.

Chemical Reaction, Determination of Number of Independent Chemical Reactions

Reaction 1 Reaction 2 Stoichiometric

A = B B = C Coefficients of Reactions:

component r 1 r 2A -1 0B 1 -1C 0 1

Incidence Matrix

stream reactor separator

1 21 1 02 -1 13 0 -14 0 -15 1 -1

r1 1 0r2 1 0

Specification Table and Matrix of Coefficients

Specification Table:

component stream number reactionnode number name 1 2 3 4 5 r1 r2

31.251 1 A 1 nx2;1 0 0 1 -1 01 2 B 0 nx2;2 1 0 0 1 -11 3 C 0 nx2;3 0 0 0 0 12 1 A 0 nx2;1 0 0 1 0 02 2 B 0 nx2;2 1 0 0 0 02 3 C 0 nx2;3 0 1 0 0 0

number of real streams 5 balance equations in node 1 3number of independent chemical reactions 2 balance equations in node 2 3number of unknown compositions in stream 3 sum equations (stream 2) 1total sum of unknowns 10 streams with fixed flows 1

headings 1sum 9

number of rows 9total number of unknowns + one column represum of unknowns + 1 number of columns 11

equations missing 2

n1 n2 n4 n5 nr1 nr2

H53
Number of Independent Reactions: Only independent reactions can be included in balancing. If there is a greater number of reactions taking place in the block and if we are not totally sure which ones of them are independent, we can establish their number by determining the rank of the transposed matrix of stoichiometric coefficients. The procedure is described in detail in the text.
B73
Specification Table: The exact procedure of how to draw up a specification table is described in the text. The number of unknowns is given by the number of cells having different alphanumerical designations. There are 7 in our case. Balance relations apply to 4 components. The condition of the total of weight fractions of all components being equal to 1 is the additional relation for the streams No. 3. For the system to be solvable we need two more additional relations. The text talks in greater detail of cases in which a system is solvable and how to proceed if a system is overdetermined or if the additional relationships are non-linear.
I77
Reaction: The Component rows in the Reaction column show: stoichiometric coefficients in the case of molar balance and products of stoichiometric coefficients and molar masses in the case of mass balance.

missing equations may be represented by the mathematical models of the two reactions taking place in the reactor

reaction r1 where 16.91371

reaction r2 where k1k2

Kr = 1.09623 t

Matrix of Coefficients:

#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?A #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?B #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?C #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?A #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?B #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?C #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?sum #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?

#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?reaction r1 0 -1 0 0 0 0 0 16.9137 0reaction r2 0 -1 0 0 0 0 0 0 1.0962

Solving a System of Equations Using Methods of Linear Algebra, with the Advantage of Using Excel

Vector of Solutions:

#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?

#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?

mass fractionsin stream 2 #NAME? #NAME? #NAME?

reactor volume V #NAME?

Target function

throughput #NAME?

for the PFR (piston flow reactor) we have

nx2;1.exp(+k1.t) - n2 = 0 exp(+k1.t) =

nx2;2.Kr - n2 = 0 Kr = (k2 - k1)/k1/(e-k1t - e-k2t)

Matrix generated by the Transform function is supplemented bytwo last lines represent additional relations - chemical reactions r1 and r2 for CSTR

n3

kmol.hod-1

n1 n2 nx2;1 nx2;2 nx2;3 n3 n4 n5 nr1 nr2

kg.hod-1

m1 m2 mw2;1 mw2;2 mw2;3 m3 m4 m5 mr1 mr2

w2;1 w2;2 w2;3

m3

kg.hour-1

J124
The corresponding formula: transpose(mmultipl(inverse(matrix of coefficients);vrs)) matrix must be square press Shift+Ctrl + Enter

output of B #NAME?

mean residence time 7.312 hourraw material cost #NAME? #NAME?

market value of C #NAME? #NAME?

process costs #NAME? #NAME?

rate of depreciation:- reactor 202.9 1.623

rate of depreciation:-separator 336.1 2.689

process costs #NAME? #NAME?

Application of Solver

minimum process cos #NAME?Equal toBy changing cells t D6

T D7

optimum values t 7.312 hoursT 359.94 K

kg.hour-1

$.hour-1 106 $/year$.hour-1 106 $/year$.hour-1 106 $/year$.hour-1 106 $/year$.hour-1 106 $/year

$.hour-1 106 $/year

$.hour-1

Min

missing equations may be represented by the mathematical models of the two reactions taking place in the reactor

0.3867730.005975

7.312

#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?

#NAME? #NAME?0 00 0

Continuous Stirred Tank Reactor with Recycle Stream

Process Basis and Data Available with Respect Thereto

density rho 900

mean residence time t 20.000 hourT 360.00 K

reaction coefficient k1 0.388577reaction coefficient k2 0.006009production of B 50000

Process Flow Sheet

List of Components, Streams and Blocks.

List of Streams: List of Components:

1 feed A 1 A 200.00

2 mixture A;B;C 2 B 200.00

3 pure B B 3 C 200.00

4 pure C C5 recycle A

List of Blocks

1 reactor R2 separator S

Basis of Calculation and Conversion of Specified Flows and Compositions

Molar Balance: Reference Stream: n3 = 31.25

Conversiondoes not take place

kg.m-3

hour-1

hour-1

tons.year-1

kg.kmol-1

kmol.h-1

1

2

3

4

55

R SR

B46
Mass Balance - Molar Balance: It is practicable to balance amount of matter (molar balance) only if molar mass can be attributed to all components.
E46
Reference Stream: Balancing is practicable only if at least one flow is known in the system being balanced. If this numerical entry is missing in the specification, we must fix a random numerical value for one (reference) stream.
A48
Conversion: All data of the specification must be converted to a uniform basis. Molar Balance: flow kmol/s composition mole fraction Mass Balance: flow kg / s composition weight fraction SI System is expedient if followed by enthalpy balance - energy flows are then obtained directly in kW - otherwise we can choose any basis for the flow - for instance, tons/year or g/hour.

Chemical Reaction, Determination of Number of Independent Chemical Reactions

Reaction 1 Reaction 2 Stoichiometric

A = B B = C Coefficients of Reactions:

component r 1 r 2A -1 0B 1 -1C 0 1

Incidence Matrix

stream reactor separator

1 21 1 02 -1 13 0 -14 0 -15 1 -1

r1 1 0r2 1 0

Specification Table and Matrix of Coefficients

Specification Table:

component stream number reactionnode number name 1 2 3 4 5 r1 r2

31.251 1 A 1 nx2;1 0 0 1 -1 01 2 B 0 nx2;2 1 0 0 1 -11 3 C 0 nx2;3 0 0 0 0 12 1 A 0 nx2;1 0 0 1 0 02 2 B 0 nx2;2 1 0 0 0 02 3 C 0 nx2;3 0 1 0 0 0

number of real streams 5 balance equations in node 1 3number of independent chemical reactions 2 balance equations in node 2 3number of unknown compositions in stream 3 sum equations (stream 2) 1total sum of unknowns 10 streams with fixed flows 1

headings 1sum 9

number of rows 9total number of unknowns + one column represum of unknowns + 1 number of columns 11

equations missing 2

n1 n2 n4 n5 nr1 nr2

H53
Number of Independent Reactions: Only independent reactions can be included in balancing. If there is a greater number of reactions taking place in the block and if we are not totally sure which ones of them are independent, we can establish their number by determining the rank of the transposed matrix of stoichiometric coefficients. The procedure is described in detail in the text.
B73
Specification Table: The exact procedure of how to draw up a specification table is described in the text. The number of unknowns is given by the number of cells having different alphanumerical designations. There are 7 in our case. Balance relations apply to 4 components. The condition of the total of weight fractions of all components being equal to 1 is the additional relation for the streams No. 3. For the system to be solvable we need two more additional relations. The text talks in greater detail of cases in which a system is solvable and how to proceed if a system is overdetermined or if the additional relationships are non-linear.
I77
Reaction: The Component rows in the Reaction column show: stoichiometric coefficients in the case of molar balance and products of stoichiometric coefficients and molar masses in the case of mass balance.

missing equations may be represented by the mathematical models of the two reactions taking place in the reactor

reaction r1 where 8.771537

reaction r where 1.120177

Matrix of Coefficients:

#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?A #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?B #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?C #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?A #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?B #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?C #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?sum #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?

#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?reaction r1 0 -1 0 0 0 0 0 8.7715 0reaction r2 0 -1 0 0 0 0 0 1 1.1202

Solving a System of Equations Using Methods of Linear Algebra, with the Advantage of Using Excel

Vector of Solutions:

#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?

#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?

mass fractionsin stream 2 #NAME? #NAME? #NAME?

reactor volume V #NAME?

Target function

throughput #NAME?

output of B #NAME?

mean residence time 20.000 hour

for the CSTR (continuous stirred tank reactor) we have

nx2;1.(1+k1.t) - n2 = 0 (1+k1.t) =

nx2;2.(1+k2.t) - n2 + nx2;1 = 0 (1+k2.t) =

Matrix generated by the Transform function is supplemented bytwo last lines represent additional relations - chemical reactions r1 and r2 for CSTR

n3

kmol.hod-1

n1 n2 nx2;1 nx2;2 nx2;3 n3 n4 n5 nr1 nr2

kg.hod-1

m1 m2 mw2;1 mw2;2 mw2;3 m3 m4 m5 mr1 mr2

w2;1 w2;2 w2;3

m3

kg.hour-1

kg.hour-1

J123
The corresponding formula: transpose(mmultipl(inverse(matrix of coefficients);vrs)) matrix must be square press Shift+Ctrl + Enter

raw material cost #NAME? #NAME?

market value of C #NAME? #NAME?

process costs #NAME? #NAME?

rate of depreciation:- reactor 202.9 1.623

rate of depreciation:-separator 336.1 2.689

#NAME? #NAME?

F T K1 16272.8 360.00

2 14099.1

3 13426.6

4 13129.4

5 12982.4

6 12910.4

7 12881.2

8 12878.9

9 12894.5

10 12922.6

11 12959.7

12 13003.7

13 13053.0

14 13106.4

15 13163.0

16 13222.4

17 13283.9

18 13347.3

19 13412.3

20 13478.5

$.hour-1 106 $/year$.hour-1 106 $/year$.hour-1 106 $/year$.hour-1 106 $/year$.hour-1 106 $/year

process costs F $.hour-1 106 $/year

t hours

0 5 10 15 20 2510000

11000

12000

13000

14000

15000

16000

17000

Target function

mean residence time

F

missing equations may be represented by the mathematical models of the two reactions taking place in the reactor

#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?#NAME? #NAME?

#NAME? #NAME?0 00 0

0 5 10 15 20 2510000

11000

12000

13000

14000

15000

16000

17000

Target function

mean residence time

F