Institute of Photonics and Electronics v.v.i. ( ... · Optical fiber Nobelprize 2009 Charles K. Kao...

Post on 10-May-2020

1 views 0 download

transcript

Institute of Photonics and Electronics v.v.i. (www.ufe.cz)

Technology of Optical Fibers

FILANO team

www.ufe.cz/dpt240, www.ufe.cz/~kasik

Ústav fotoniky a elektroniky AV ČR, v.v.i.

VŠCHT – ÚSK, 2013

ZÁKLADNÍ VÝZKUM:fotonika - vláknové lasery a zesilovače, optická vlákna

- optické biosenzory- státní etalon času, detekce pole živých buněk

100 FTE

Prof. Jiří HomolaČeská hlava 2009

Outline

Intro Optical fibers

TechnologiesPreform preparation – MCVD & otherssilica properties – MCVD vers. conventionalfiber drawing

Application Telecommunications, fiber lasers,amplifiers, sensors

SummaryLABO MCVD, fiber drawing, sol-gel,

magnetron sputtering

VŠCHT – ÚSK, 2013

Optical fiber

Nobel prize2009

Charles K. Kao high-purity materialsmax impurities acceptable

in ppb (10-9)

ULTRA-PURE TECHNOLOGIES

attenuation, dispersion

Optical losses in optical fibers

- trasparency of 3 mm of window-glass≈ 2 km of optical fiber

Optical fiber : dielectric structure, L<< r, ncore > nclad

[W. Snell +1626, J. Tyndall +1893]

[Ch.Kao, 1964]

VŠCHT – ÚSK, 2013

Purity of material

1. Per Analysis – PA (99 - 99,5 %)

2. Semiconductor – PP (99,9995 %)

3. Ultra-pure - FO Optipur / for trace analysis [ppb]

% – 10-2

ppm – 10-6 (parts per million)

ppb – 10-9 (parts per billion) : content of impurities acceptable in FO Optipur materials

Ultra-pure technologies - CVD !VŠCHT – ÚSK, 2013

Optical fiber preparation

MCVD

2. Fiber drawing

1. Preform

VŠCHT – ÚSK, 2013

Ultra-pure technologiesCVD - Chemical Vapor Deposition

A (g) + B(g) = AB (s)

Coldsourcegases

Reactants

Gaseousproduct

Heatflux

Substrate

Reaction zone

Goal : starting materials (g) or (l) can be purified (E.g. distilled)

VŠCHT – ÚSK, 2013

Preform preparation

MCVD – (Modified) Chemical Vapor Deposition1. Deposition of layers

1700°C

O +2

Substrate tube

Glassy layers

SiCl4

2100°C

2. Collapse

GAS MIXTURE GLASS - PREFORM

SiO2destilled

� Sequential sintering of thin glassy layers (of thickness 1-20 μm) onto inner wall of silica substrate resulting in bulk material –preform [S. R. Nagel, 1982]

� high purity (~ 101 ppb) high preciseness (better than 1 %)VŠCHT – ÚSK, 2013

MCVD process model

1. Vaporization of starting materials� VXCl4 = VOx * Po

XCl4 / (P - PoXCl4 ) … boiling point SiCl4=56°C

2. Oxidation� 1st -order kinetics, t = 0.02 s

� Chemical equilibrium :

� SiCl4 (g) + O2 � SiO2 (s) + 2Cl2

conversion ~ 0.95 – 0.99 (1500 °C)

� GeCl4 (g) + O2 � GeO2 (s) + 2Cl2

conversion ~0.5 – 0.6 (1600 °C), f(t, xSiCl4/x GeCl4)

3. Deposition� Thermophoretic efficiency

E = K . (1 – Tcool surface / T reaction) ~ 0.6

VŠCHT – ÚSK, 2013

MCVD process model

Temperature field during deposition

VŠCHT – ÚSK, 2013

MCVD process model

Process parameters :Variable :- flow rates (Si, Ge, P, B, F, Ox …)- deposition temperatureAdjustable :- temperature of starting materials (liquids)- burner speed- pressure- rotation speed of the substrate tube- substrate tube dimensions

[McChesney and Nagel, 1982, Wood, 1987, Kirchhof, 1986]

VŠCHT – ÚSK, 2013

MCVD output parameters

Microphoto of cross section of preform

Tomography of the refractive-index profile of preform

� High purity material due to FO-Optipur purity starting materials.

� High quenching rate ranging from 102 to 103 °C/s !

Concentration profile

-0,4 -0,2 0,0 0,2 0,4

0,0

0,5

6

8

10

12

14

16

Yb3+

AVG= 1570 ppm

Dop

ant

con

ce

ntr

atio

n [

mo

l%]

AL2O

3

P2O

5

Yb3+

Preform radius [mm]

VŠCHT – ÚSK, 2013

MCVD - doping of silica

0 5 10 15 20 25 30 35 40 45

1.45

1.46

1.47

1.48

1.49

1.50

1.51 SnO

PbO

Sb2O

3

F

B2O

3

P2O

5

GeO2

Al2O

3

TiO2

ZrO2

Re

fra

ctive

in

de

x (

63

3nm

, 2

0°C

)

Dopant content [mole %]

[A.B. Chynoweth, 1979, M. Shimizu, 1986, Y. Ohmori, 1983, S. H. Wemple, 1973,H. Wehr 1986, I. Kasik, 2005, K. Sanada, 1980, M. M. Karim 1994]

VŠCHT – ÚSK, 2013

Other CVD technologies (ultra-pure)

OVD

VAD

MFC

H /O

fuel2 2

Sootpreform

SiCl

+dopants4

H /O fuel2 2

SiCl

+dopants4

FLAME

Sintering

Sintering

Preform

Preform

VŠCHT – ÚSK, 2013

Other technologies : sol-gel

No melting, disorder imprinted.

O

Cl

He

2

2

SinteringDryingHydrolysiswet gelling

[J. McKenzie (US), J. B. McChesney, 1997, A. Pope (US), 1993, M. Guglielmi (It), J. Livage (F), R. Almeida (P), S. Ribeiro (Br), B. McCraith (Ir), J. Brinker (US), S.Sakka (J), V. Matejec & J.Mrazek (CZ)]

VŠCHT – ÚSK, 2013

ComparisonCVD (Chemical) x PVD (Physical)

MCVD DC magnetron sputtering

OVD etc. vacuum evaporation etc.

Layer thickness1 – 101 µm 1 - 101 nm

(however, both are reported as “thin layers”)

Deposition rateHIGH LOW

ProductsLayers, bulks Layers only

VŠCHT – ÚSK, 2013

Comparison(M)CVD x conventional

Starting materialsgaseous (g) or liquid (l) (s) solid state

melting point of oxides different melting point comparable

Purification methodsdistillation recrystallisation, remelting

VŠCHT – ÚSK, 2013

Comparison(M)CVD x conventional

ProcessDeposition of layers Melting

= oxidation+deposition+sintering

(NO MELTING)

Collapsing of preform (MELTING) Forming

- Annealing

Structure of productsGraded - profiles Homogeneous

Material purityppb (10–9, i.e. 10 –7 mol%) 10–3 mol% (99,999%)

VŠCHT – ÚSK, 2013

Properties(M)CVD x conventional

Glassforming region

Quenching rate

~ 102 - 103 °C/s ~10 °C/min

[O. V. Mazurin, 1980, J. E. Shelby, 1992]

VŠCHT – ÚSK, 2013

Properties(M)CVD x conventional

Viscosity curves

Short Long

Annealing ~ 1120-1180 °C [www.Heraeus, M. B. Volf, 1987, A. B. Chynoweth, 1979, M. Ohashi, 1992, O. V. Mazurin, 1980, K. Shiraki, 1993]

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4

5

6

7

8

9

10

11

12

13

14

Al2O

3 (3.5%) - SiO

2

F (0.56%) - SiO2

B2O

3

P2O

5

soda-lime-silica

GeO2

Vycor

B2O

3- SiO

2

SiO2

(Tg)

(Ts)

log

(vis

co

sity [

dP

a.s

])

Temperature-1 x10

4 [K

-1]

2000 1800 1600 1400 1200 1000 800 600 400 200

Temperature [°C]

VŠCHT – ÚSK, 2013

Properties(M)CVD x conventional

Expansion coefficient KLTR 0.5 .10-6 K-1 < 3.3 x 10-6 K-1

[A. B. Chynoweth, 1979, O. V. Mazurin, 1980, S. H. Wemple, 1973]

0 2 4 6 8 10 12 14

0

5

10

15

20

SiO2-TiO

2

SiO2-B

2O

3 ∼∼∼∼ SiO

2-GeO

2

SiO2-P

2O

5

Lin

ea

r e

xp

an

sio

n c

oe

ffic

ient

x10

6 [

K-1]

Dopant content [mol%]

VŠCHT – ÚSK, 2013

Properties(M)CVD x conventional

Optical properties - transparency

Dependence of absorption at UV on technology of silica production [Safibra, 2010 & M. B. Volf, 1987]

200 300 400 500 600 700 1000 2000 3000 4000

0

20

40

60

80

100Absorption of impurities

Thickness 1 cm

VIS

Suprasil 300

Infrasil

Optical glass BK 7

Window glass

Tra

nsm

issio

n (

%)

Wavelength (nm)

VŠCHT – ÚSK, 2013

Properties(M)CVD x conventional

Optical properties – refractive index

n 633 nm, 20 °C = 1.457

n 10.6 µm, 20°C < 1 [www.heraeus.de]

1.48 < n < 1.95

[www.schott.com]

VŠCHT – ÚSK, 2013

Comparison : GLASS(M)CVD x conventional

GLASS : solid state material, amorphous, usually produced by quenching of melt, in glassy state (stable below Tg) [Hlaváč, 1981]

Structureamorphous amorphous

short-distance order (< 1 nm) longer-distance disorder (>1 nm)no X-ray crystallographic signal

nano-structure imprint feasible (glass/glassceramics)

Production - kineticssintering + melting +melting & quenching ~102 -103 °C/s quenching ~10°C/min

[G. Tammann, 1933]VŠCHT – ÚSK, 2013

Comparison : GLASS(M)CVD x conventional

Thermodynamics

Glassy state : stable bellow Tg(depending on quenching rate)

• extremely high quenching

• stable

• ? Reproducibility

• higher porosity

• lower density

Glass

Crystal

Temperature

Volu

me

Meltingpoint

Surfusion

Fast annealing

Slow annealing

Liquid

Transformationarea

Tg

VŠCHT – ÚSK, 2013

Drawing of optical fibers

� diameter

80-1000 µm

� temperature 1800-2000°C

� No thermo-insulation

� No textile

� No nanofibers !

T ~ 1400°C

Φ µ about 10 m

Die

VŠCHT – ÚSK, 2013

Comparison of fibersoptical x soft-glass

SILICA (doped with GeO2, P2O5, B2O3 …)

High productivity (relative)

• Purity FO Optipur grade

• Chemical durability

• Precise geometry (<0.5 µm)

• Low optical loss ~ 0.2 dB/km

• Strength ~ 5 GPa due to coating

• Use in OPTICS

� (CaO, MgO)-Al2O3-B2O3- SiO2

� Na2O - CaO - (Al2O3) - SiO2

� High productivity – low processing temperature, cheap starting materials

� Thermo-insulating properties

� Chemical durability

� A geometry allowing weaving

� Strength ~ 2.5 GPa (without coating, temporary)

� Use as insulators and textiles

VŠCHT – ÚSK, 2013

ApplicationApplication

Telecommunicationfibers(cables)

Fiber lasers &amplifiers

Telecom amplification,

raw power …

Fiber sensorsEnvironmental,

biology,medicine…

Special fibers

VŠCHT – ÚSK, 2013

Telecommunications

Testing of 200 km telecom line

GI - technology transfer VÚSU Teplice, Hesfibel TR

SM 1300, 1550 nm

1981 – 1st demonstration of CZ optical fiber – UFE/URE/JLS

VŠCHT – ÚSK, 2013

VŠCHT – ÚSK, 2013

Telecommunications : fiber lasers and amplifiers

detectoramplifiersource

Pump source

100 km

fiber

Fiber laser

High power fiber lasers

Welding, cutting < 2kWsavings, fast processPALS

Intensity of lightSun 63 MW/m21W-fiber laser 12.7 GW/m2

Er- fiber laser, pulsed 197 fs,5m resonatorLiekki

VŠCHT – ÚSK, 2013

Fiber-optic sensors

Source

Detector

Ø 18 µm

Small devices capable of continuous and reversible monitoring of (bio)chemical species and their concentration

Principle : change of properties of the light due to chemical (physical) changes of medium.

VŠCHT – ÚSK, 2013

SUMMARY

MCVD

Suitable for the preparation of :

� silica-based materials, doped (up to 50 mol%)

� few-component (up to ~ 6 components) materials

� materials for photonics, optics, optoelectronics

� materials of high-level purity (~ 101 ppb)

� products requiring high preciseness of geometry (better 1 %)

VŠCHT – ÚSK, 2013

SUMMARYSUMMARY

1. OF technology : preparation of structures of high preciseness from materials of ultra-high purity (impurities in ppbs only).

2. OF preparation in two steps : preform preparation and fiber drawing.

(M)CVD technique (preform) makes possible to prepare multilayered tailored structures of suitable level of purity.

3. Fibers conventional (passive) and specialty (active).

4. Research of optical fibers (CR) :

VŠCHT – ÚSK, 2013

References

� J. M. Senior : Optical fiber communications - Principle and practise, Pearson Education Limited, Harlow, England, 2009.

� A. Mendez, F.T. Morse : Specialty optical fibers handbook,

Elsevier Science & Technol, USA, 2006.

� J. Schrofel, K. Novotný : Optické vlnovody, SNTL, 1986 � Saaleh, Fotonika (1 - 4), Matfyzpres� S. R. Nagel, J. B. McChesney, K. L. Walker : An overview of the

MCVD process and performance, IEEE J. Quantum Electron. QE-18 (1982) 459-477

� Československý časopis pro fyziku 1/2010, 4-5/2010, 1/2011� Jemná mechanika a optika 55 (2010)� Sdělovací technika 3/2011

VŠCHT – ÚSK, 2013

Uplatnění v oboru

UCHP - Oddělení aerosolových a laserových studií : Laserová ablační přípravananostrukturovaných prášků, RNDr. Vladislav Dřínek, CSc., PROJEKT MAGISTERSKÉHO/BAKALÁŘKÉHO STUDIA

UCHP - Oddělení aerosolových a laserových studií : Laserová ablační přípravananostrukturovaných prášků v kryogenních atmosféráchRNDr. Vladislav Dřínek, CSc., PROJEKT DOKTORSKÉHO STUDIA

ALMA - Akademická laboratoř materiálového průzkumu malířských děl , RNDr. Janka Hradilová

VŠCHT – ÚSK, 2013