Science Case at ELI-Beamlines Daniele Margarone ELI-Beamlines Project Institute of Physics of the...

Post on 28-Mar-2015

224 views 2 download

transcript

Science Case at ELI-BeamlinesDaniele Margarone

ELI-Beamlines ProjectInstitute of Physics of the Czech Academy of SciencePALS Centre Prague, Czech Republic

UPOL 22/2/12Projekt:

Výzkum a vývoj femtosekundových laserových systému a pokročilých optických technologií (CZ.1.07/2.3.00/20.0091)

Research Program 1Laser generating rep-rate ultrashort pulses & multi-PW peak powers

Research Program 2 X-ray sources driven by rep-rate ultrashort laser pulses

Research Program 3Particle Acceleration by lasers

Research Program 4Applications in molecular, biomedical and material sciences

Research Program 5Laser plasma and high-energy-density physics

Research Program 6High-field physics and theory

Science Case at ELI-BeamlinesScience Case at ELI-Beamlines

ELI-Beamlines Scientific Team

Science Case at ELI-BeamlinesScience Case at ELI-Beamlines

Unique features relativistic ultrashort and synchronized high-intensity particles,

lasers and X-ray beams high repetition rate unprecedented energy range high brightness excellent shot-to-shot reproducibility (laser-diode and thin-disk

technology)

Protons, Ions, Electrons, X-rays and -rays

Potential applications, business and technology transfer accelerator science (new and compact approaches, e.g. Compact

FEL) time-resolved pump-probe experiments (fusion plasmas, warm

dense matter, laboratory astrophysics, etc.) medicine (hadrontherapy and tomography of tumors) bio-chemistry (fast transient dynamics) security (non-destructive material inspection)

Target AreasTarget Areas

Potential future 3D diffractive X-ray imaging of complex molecules

Potential future laser driven FEL/XFEL

Potential future laser driven hadron-therapy

RA3Particle

Acceleration

• RPA scheme• TNSA scheme• ion diagnostics

• nano/micro structured• submicro-droplets• H-enriched• clusters/mass-limited• double-layer

• RPA (laser-target optimization) - max. energy increase (H+/Cn+) - pencil ion beam - variable ion energy• TNSA (ion beam handling) - ion beam transport - electromagnetic selection - magnetic lens focusing• radiobiological dosimetry - dose absorption optimization - real-time monitoring - adapted treatment planning - biological cell irradiation

• laser-driven electron acceleration - self guiding (gas target) - external guiding (gas target) - solid targets• LUX, FEL & XFEL

• neutrons: DD, DT, (p, n) and (, n) - single-target scheme - catcher-target scheme• -rays from accelerated e- beams• e-e+ pairs from: - accelerated e- beams (catcher target) - “hot electrons” in solid targets • Shielding optimization

• Radiation damaging

RA5Plasma & HighEn. Dens. Phys.

• 3D proton beam probing•X-ray probing•optical interferometry

• Non linear effects - self focusing - filamentation - transient magnetic fields (astrophys.) - parametric instabilities• Warm Dense Matter (WDM)• Stopping power of protons/ions in: - plasmas - WDM

• probing of ultraintense electric fields in wakefield• laser channeling in low density plasmas

• advanced targets

Plasma based x-ray lasers X-rays from relativistic e-beams

Harmonics (gas)

Probe laser

Solid target

Pump Laser

K-alphaPrepulse

K-alpha emission Harmonics (solid)

Laser-driven x-rays: several approaches

- Monochromatic

- Fully divergent

- Duration 100 fs

- KHz rep. rate

- Flux : 1e9 ph/shot

Main limitations : tunability, polychromaticity, divergenceMain limitations : tunability, polychromaticity, divergence

K-alpha emission : easy and ultrafast x-ray source

Harmonics from solid target plasma

Radiated energy

Velocity Acceleration

Rc

β

β.

Electron X-rays from relativistic e-beamsWe need relativistic electronsundergoing oscillations

X-rays from relativistic e-beams

Betatron radiation

3 D diffractive imaging using synchronized ELI x-ray pulses

Timing synchronization of 30 fs should allow to go for µm samples diffractionExplosion happens over many ps (Hajdu et al.)

From projection images to From projection images to (almost) 3d structures(almost) 3d structures

Kirz,Nature Physics 2, 799 - 800 (2006)

Single- particle diffraction imaging of Single- particle diffraction imaging of biological particles without crystallizationbiological particles without crystallization

.

1.05

1.00

0.95

0.90

0.85

0.80Nor

m. i

nteg

r. in

tens

ity

6543210-1

Delay (ps)

Ablation Phase transitions Bio structures, damage

X-ray microscopy

Warm dense matter

Magnetism

Plasma diagnostics

Atomic physics

Bright fs sources for applications

C. Joshi, Scientific America, 2006

Laser-driven Electron Acceleration

Envisioned electron beams at ELI-BamlinesEnvisioned electron beams at ELI-Bamlines

Scaling laws:S. Gordienko and A. Pukhov, Phys. Plasmas 12 (2005) 043109W. Lu et al., Phys. Rev.Spec.Top.-Accelerators and Beams 10 (2007) 061301OSIRIS simulations:L. O. Silva, ELI Scientific Challenges, April 26 2010

50 J beamlines (10 Hz) Bubble regime (high divergence beam)• Laser parameters: EL=50J, L=25fs, =23m, a0=35• Plasma parameters: nP=1.8x1019cm-3

• Electron beam parameters: Eel= 1.5 GeV, qel= 6.2 nC Blow-out regime/self-injection (pencil beam)• Laser parameters: EL=50J, L=72fs, =33m, a0=5• Plasma parameters: nP=5.3x1017cm-3, Lacc=5.6cm• Electron beam parameters: Eel= 4.4 GeV, qel= 1.2 nC Blow-out regime/external-injection (pencil beam)• Laser parameters: EL=50J, L=134fs, =60m, a0=2• Plasma parameters: nP=6.3x1016cm-3, Lacc=8.8cm• Electron beam parameters: Eel= 14.9 GeV, qel= 0.85 nC (?)

1.3 kJ beamlines (0.016 Hz) Blow-out regime/self-injection (ELI end-stage)• Laser parameters: EL=1.3kJ, L=215fs, =97m, a0=5• Plasma parameters: nP=6.1x1016cm-3, Lacc=1.5m• Electron beam parameters: Eel= 39 GeV, qel= 3.4 nC Blow-out regime/external-injection• Laser parameters: EL=1.3kJ, L=395fs, =178m, a0=2• Plasma parameters: nP=7.1x1015cm-3, Lacc=22.9m !!! NO• Electron beam parameters: Eel= 131 GeV, qel= 2.5 nC (?)

Blow-out regime

Laser parameters

Plasma parameters

Electron beam parameters

19

C

Vp ~0

Vp ~C

C

Non relativistic protons

Relativistic protons

Photons

Photons Ep ~ I1/2

TNSA

Ep ~ I RPA (at very high intensitíes, light pressure accelerates)

Laser-driven Ion Acceleration

TNSA(Target Normal Sheath Acceleration)

high laser contrast (main/pedestal) short laser pulse (10s fs – few ps) still occurring when the pre-plasma is “localized” at the target front-side higher energy gain in metals (returning electron current for the recirculations of “hot electrons”).

TNSA

Ponderomotive Acceleration(Sweeping potential at the laser pulse front)

low laser contrast (dense pre-plasma) long laser pulse (10s ps – ns) long pre-plasma length (100s m – mm) high laser absorption in the pre-plasma almost no laser interaction with the solid target

Y. Sentoku et al., Phys. Plasm. 10 (2003) 2009

Courtesy of S. Bulanov

RPA (Radiation Pressure Acceleration)

Courtesy of S. Bulanov

Towards Quark-Gluon Plasma

R.A. Snavely et al., Phys. Rev. Lett. 85 (2000) 2945

S.A. Gaillard et al., “65+ MeV protons from short-pulse-laser micro-cone-target interactions”, Bull. Am. Phys. Soc. G06.3 (2009) (only 10% energy increment )

W.P. Leemans et al., Nature Phys. 2 (2006) 696

Records in laser-driven particle accelerationRecords in laser-driven particle acceleration

Protons Electrons

A technological progress is needed: towards higher laser intensities!!!

24

Beyond the energy frontier...Beyond the energy frontier...

K. Zeil et al., New Journal of Physics 12 (2010) 045015

J. Fuchs et al., C. R. Physique 10 (2009) 176 and references therein

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 10250,1

1

10

100

1000

10000

NOVA PW

RAL PWLULILos Alamos

CUOSOsaka

J anusp

APRILOA,

Saclay,

MBI

MPQMBI,

Tokyo,

I2

(I2)1/2

RPA

Max

imum

Pro

ton

Ene

rgy

[MeV

]

I2 [Wm2/cm2]

30-60 fs 100-150 fs 0.3-1 ps simulations

TNSA

Kyoto

ELI intensity regime

25

Envisioned proton beamsEnvisioned proton beams

B. Qiao et al, PRL 102, 145002 (2009)

6x1022W/cm22x1022W/cm2

2x1021W/cm2

2 PW beamlines (10 Hz) 50 J, 25 fs, 1021 W/cm2, RPA, Epeak = 200 MeV, = 65%, Np 1012, div.: 4°, quasi-monoenergeticReferences:Matt Zepf, ELI-Beamlines Sci. Chall. Workshop, April 26th, 2010

10 PW beamlines (0.016 Hz)

1.3 kJ, 130 fs, 1023 W/cm2, ECut-off = 2 GeV, = 50%, Np 2x1012, div. 10° 2x1.3 kJ, 130 fs, 20 PW, 2x1023 W/cm2, ECut-off = 2 - 2.5 GeV 5x1.3 kJ, 130 fs, 50 PW, 5x1023 W/cm2, ECut-off = 4 GeV (ELI end-stage) References:B. Qiao et al, PRL 102 (2009)145002J. Davis and G.M. Petrov Physics of Plasmas 16, 023105 (2009)ELI White-book, OSIRIS simulations (by Luis Cardoso)

26

Basic experiment at E6a (high rep. rate)Basic experiment at E6a (high rep. rate)TNSA/RPA: PL = 2 PW (10 Hz), IL 1022 W/cm2 , Emax = 200 MeV, Np 1012

LegendOAP: off-axis-parabola; T: primary target; T1/T2: secondary target (proton radiography); RCF: radiochromic film; FM: flat mirror; EMQ: electromagnetic quadrupole optics (1.5 Tesla), TP spectrometer (B=1.5 T, E=10-50 kV); D: detector (film/semiconductor); V: gate valve, LS: local shielding (-rays/neutrons)

Challenges & advanced source useChallenges & advanced source use

Electron accelerationExternal injection: development of effective electron beam loading techniquesUse of an all-optical injection scheme (colliding pulses)Use of a tailored longitudinal plasma density profileDevelopment of a multiple stage acceleration setup including laser and electron beam optics (synchronization of the laser and electron beams in several tens of meters is necessary!)

Proton/ion acceleration1.Improving the beam quality in terms of divergence and monochromaticity2.Increasing the beam stability (energy distribution, particle numbers, emittance)3.Optimizing the laser to ion conversion efficiency4.Use of ultrathin targets (very high contrast and circular polarization are needed)5.Beam handling & selection (either through target engineering or conventional solutions, e.g. micro-lenses or magnetic quadrupoles)

Diagnostic requirements and developmentStrong energy increase of the particles produced at extreme laser intensities (particles whose energies will range from MeV to tens of GeV)Huge particle number per shot per second (prompt current)Energy and beam spreading of produced particles (no unique detector can be used)Huge EMP

28

Laser-driven hadron-therapy (ELI-MED)Laser-driven hadron-therapy (ELI-MED)

Courtesy of J. Wilkens

Courtesy of J. Wilkens

Courtesy of J. Wilkens

Courtesy of J. Wilkens

Courtesy of J. Wilkens

Courtesy of J. Wilkens

Courtesy of J. Wilkens

One of the big Challengesin Physics would be to builta laser powerful enough to

breakdown vacuum.

Survey by “Science” 2005 Survey by “Science” 2005

EQ=mpc2

Ultra-relativistic intensity isdefined with respect to the proton EQ=mpc2, intensity~1024W/cm2

Inverse Compton ScatteringInverse Compton Scattering

The Doppler energy upshift allows one to reach high photon energies, e.g. 100 MeV -rays with a 10-GeV electron beam.

530 pages of Science, technology and implementation strategies of ELI

ELI White BookELI White Book

It’s time to wake up!!!

Thank you for your attention and invitation!