+ All Categories
Home > Documents > Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Date post: 05-Jan-2016
Category:
Upload: sharleen-wilson
View: 215 times
Download: 0 times
Share this document with a friend
44
Acid-base status assessment Stanislav Matoušek, Jiří Kofránek
Transcript
Page 1: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Acid-base status assessment

Stanislav Matoušek, Jiří Kofránek

Page 2: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Elementary terms

Page 3: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Why is pH (concentration of H+) so important?

• Normal concentration of H+ in plasma is 0.000 04 mmol/L = 40 nmol/L

• Very high chemical activity of hydrogen ions (protons) in solution

• Changes of pH influence spacial conformation of proteins

• however, in other fluids, it can different by many orders of magnitude

• pH = - log10(H+)• 40 nmol/L = pH 7.4 change 2x …. -0.3 (change 1/2x…… +0.3) change 4x …. -0.6 change 8x …… -0.9 change 10x …….- 1.0 How is [H+]

determined?

Page 4: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Buffers

In blood• Bicarbonate (open buffer) • Hemoglobin (histidin

residues)• Albumin (histidin residues)• Phosphates

In cells • Phosphates• Bicarbonate• Proteins

High reactivity and very low amounts of H+ present => [H+] determined by chemical equilibria of buffers. Buffers - substances that react with the H+. Buffering occurs mostly with substances that do have pKa close to the actual pH.

Page 5: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Buffering equilibria

[H+][B-] = Ka [HB]

[H+] = Ka*[HB]/[B-]log[H+] = log(Ka) +log ([HB]/[B-])

-log[H+] = -log(Ka) -log ([HB]/[B-])

-log[H+] = -log(Ka) +log ([B-]/[HB])

pH=pKa+log([B-]/[HB])

HB B-H+ +

HB+ BH+ +

Quite common

Histidine side chains in Albumin

Page 6: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Buffering

HB and B-

Page 7: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Buffering

H3PO4

H2PO4-

H2PO4-

HPO42-

HPO42-

PO43-

Page 8: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Base ExcessAt pH = 7.4, Base Exces(BE) is by definition = 0 mmol/L

Add 1 mmol of acid to the blood (as lactic acid)=> BE = -1 mmol/L

Add 5 mmol of base to the blood (NaOH) => BE = 5 mmol/L

BE

meq/L

pH

albumin

open HCO3- buf.

whole plasma

Page 9: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

How to assess acid-base

Page 10: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

What do we take?

• Arterial blood gas measurement (“Astrup”)

• Serum electrolytes electroneutrality

• Other

Page 11: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Arterial blood gas measurement

Apparatus measures:• pH ( 7.35 – 7.45)

Or analogous value: H+ = 35 – 45 nmol/l • pCO2 (40 Torr = 5.3 kPa )• pO2 (100 Torr = 13,3 kPa)• Hb (120 – 170 g/L)

Apparatus calculates:• HCO3

- (24 mmol/l) From Henderson-Hasselbalch Equation • BE ( 0 mmol/l ) From in-built „Siggaard-Andersen nomogram“ • Standard HCO3• Sat.O2

Possible problems:/ Visible air bubble stays in the syringe and dissolves in the sample / The sample is not analyzed right away. Metabolic processes

cause changes in AB parameters. (If immediate analysis is not possible, the sample should be kept in ice-bath)

Page 12: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Serum electrolytes

• Strong Ion: Na+ (135 – 145 mmol/l)• Strong Ion: Cl- (97 – 108 mmol/l)• Strong Ion: K+ ( 3.5 – 5 mmol/l )• Buffer: Total CO2 or HCO3

- (24 mmol/l) …..should be equal to HCO3

- from Astrup – can check the measurement validity

Additional (not necessary):• Buffer: Phosphates -- H2PO4

- => HPO42- ( 1 –

1,5 )• Strong Ion: Ca++ (2.4 mmol/l)• Strong Ion: SO4

2-

Page 13: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Other

Buffers: Albumin (35 – 50 g/l)“Strong Ion”, Acid: Lactate (0.5 –

2.5)“Strong Ions”, Acids: Ketoacids (0)Toxic substances, acids: Salycilates,

methanol etc.

Page 14: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Change in buffer equilibria =change in pH

Page 15: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Buffering systems of the blood

H2CO

3

HCO3-H+CO2

HBufBuf-

Hb- HHb

Alb-

HAlb

HPO42- H2PO4

-

H2O

H+

H+

H+

H+

++

+

+

+

+

non-bicarbonate buffersBuf = Hb + Alb + PO4

-

Page 16: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Buffering reactions

H2CO

3

HCO3-

H+

CO2

HBuf

Buf-

H2O

Page 17: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Bicarbonate buffer

H2CO

3

HCO3-H+CO2 H2O ++

Hendersson- Hasselbalch equation:

[H+] = 24 . pCO2 / [HCO3-]

[nmol/L]=[Torr]/[mmol/L]

or

pH = 6.1 + log ( [HCO3-] / [H2CO3] )

pH = 6.1 + log ( [HCO3-] / 0.03 pCO2 )

Page 18: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Division of acid-base disturbances

• Respiratory acidosis↑ pCO2 - alveolar hypoventilation

• Respiratory alkalosis ↓pCO2 - alveolar hyperventilation

• Metabolic acidosis ↓ st. HCO3

-, BE negative• Metabolic alcalosis ↑ st. HCO3

- , BE positive

Page 19: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Bicarbonate buffer only

• What happens if we add 12 mmol/L of acid?

• What happens if the pCO2 increases from 40 mmHg to 80 mmHg ?

• What happens if we add 24 mmol/L of NaHCO3?

Page 20: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Buffer base

• The sum of all base forms of the buffers in blood is called buffer base

• BB = HCO3- + Hb- + (Alb- + HPO4

2-)Hb- = Hb H+ binding sides * [Hb]Alb- = Alb H+ binding sides * [Alb]

Due to electroneutrality reasons, buffer base of plasma is sometimes called Strong Ion Difference (SID).

Page 21: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Buffer base

H2CO

3

HCO3-

H+

CO2

HBuf

Buf-

H2O

Page 22: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Buffer base

• What happens with bicarbonate in plasma if the pCO2 increases to 80 Torr?

• What happens with total BB? Did it change?

• What happens with total BB, if you add 5meq/L of acid?

Page 23: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Buffer Base and Base Excess

• BB = HCO3- + Hb- + (Alb- + HPO4

2-)

• Buffer base would be a good measure of metalolic acidosis/alkalosis, because it does not change with pCO2 , but it does change with addition of metabolic acid/base.

• However, total buffer base also changes (significantly!) with changes of total concentration of Hb, Alb and Pi without any changes of pH!

Page 24: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Base Excess -Solution by Siggaard-Andersen

BE = BB - normalBB• Normal BB is the

buffer base that the given blood would have at pH=7.4 It varies with anemia, polycythemia, Albumin content etc.

• BE then only represents changes in BB due to changes in pH

• BE is independent of pCO2

Page 25: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Base Excess and Buffer base

BE

meq/L

pH

albumin

open HCO3- buf.

whole plasma

BB = 39 meq/LBB = 21 meq/L

BE = - 17 meq/L

Page 26: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Measure of metabolic disturbances

– Americans: Standard Bicarbonates – the value of bicarbonates, when pCO2= 40 mmHg

– Europeans: Base Excess – measure derived from BB, thus independent of pCO2

Page 27: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Compensation of Acid Base Disorders

Page 28: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Acute acid-base disturbances

• Acute respiratory acidosis↑ pCO2 - alveolar hypoventilation

• Acute respiratory alkalosis ↓pCO2 - alveolar hyperventilation

• Acute metabolic acidosis ↓ st. HCO3

-, BE negative• Acute metabolic alkalosis ↑ st. HCO3

- , BE positive

Page 29: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Compensation of respiratory acidosis

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

10

20

30

40

50

60

70

80

90PCO2 torr

Base Excess mmol/l

pH=7

,1

pH=7

,2

pH=7

,3

pH=7,

37

pH=7,4

3

pH=7,5

pH=7,6

Acute metabolic acidosis

Acute metabolic alkalosis

Acu

te r

esp

irat

ory

alk

alos

is

Acute resp. acidosis

Compensated met. Alcalosis

Compensated metabolic acidosis

Compen

sated

res.

alkalo

sis

Com

pens

ated

res

p. a

cido

sis

Page 30: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Metabolic compensation of respiratory disorder

• Is carried out by kidneys that increase plasma concentration of bicarbonate in resp. acidosis., Kidneys also decrease bicarbonate reabsorption and their concentration in plasma in resp. alkalosis.

• It takes about 2.5 days to fully develop

Page 31: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Respiratory compensation of metabolic disorder

• In metabolic acidosis, lungs eliminate more pCO2 by deeper and faster breathing. This is called Kussmaul breathing.

• The respiratory compensation of the metabolic alkalosis is limited, because slower and more shallow breathing is limited by hypoxemia.

• Full compensation takes about ½ day to develop.

Page 32: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Case History I

• 68 year old male comes to your ambulance.

• Chronic bronchitis and pulmonary emphysema

• His Lab. tests:– pH 7.3– pO2 60 mmHg– pCO2 80 mmHg– HCO3- 38 mmol/ l – BE = 17 mmol/L

Page 33: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Compensation of respiratory acidosis

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

10

20

30

40

50

60

70

80

90PCO2 torr

Base Excess mmol/l

pH=7

,1

pH=7

,2

pH=7

,3

pH=7,

37

pH=7,4

3

pH=7,5

pH=7,6

Acute metabolic acidosis

Acute metabolic alkalosis

Acu

te r

esp

irat

ory

alk

alos

is

Acute resp. acidosis

Compensated met. Alcalosis

Compensated metabolic acidosis

Compen

sated

res.

alkalo

sis

Com

pens

ated

res

p. a

cido

sis

Page 34: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Case History II

• 20 year old student is admitted to hospital for acute anxiety state

• Cannot concentrate, feeling of numbness or pins and needles in fingers

• She has split with her boyfriend recently

• Has not been seriously ill until now, no medication

• Physical examination – normal

• Lab. values:– pH 7,49– pO2 100 mm Hg– pCO2 30 mm Hg– HCO3- 22 mmol/l– BE = -2 mmol/L

Page 35: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Causes of respiratory acidosis

• Respiratory acidosis is part of Global (type II) respiratory insuficiency :

• ↓ alveolar ventilation– Respiratory center

depression• Drugs, medicaments• Respiratory centre

hypoxia or damage– Trauma– Stroke – Tumor– Cerebral edema /

increased intracranial pressure

– Nerve of muscle disease • Myasthenia gravis• Polyradiculoneuritis • Serious obesity

– Lung disease • Restrictive

– ARDS– Fibroses

• Trauma, pneumothorax, serial rib fractures

• Obstructive – Astma– Tumor– Foreign body

• Increase in dead space – Embolism– Emphysema

• Breathing CO2 in the inspired air (miners buried in a mine)

Page 36: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Causes of respiratory alkalosis

• Hyperventilation – in mechanical ventilation– With hypoxemia

• High altitude disease • Right-left shunting

– In neurosis

• Respiratory centre irritation – Trauma, salicylates, inflammation

Page 37: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Case History III

• 38 yo female, DM 1st type • Chills and fever lasting

several days• She has not felt well =>

not eaten much and not taken much insulin

• During admission day: Abdominal cramps, vomited several times

• Physical exam: BF 30 min-

1, HF 112 min-1, BP 110/70 lying and 100/60 standing, 37 °C,

• Dry mucosae and fruity breath odor

• Lab:• pH 7,20• pO2 96 mm Hg• pCO2 21 mm Hg• HCO3- 8 mmol/l• BE -20 mmol/l • Glc 15 mmol/l• Na+ 148 mmol/l• K+ 5,5 mmol/l• Cl 110 mmol/l• Positive aceton in urine

Page 38: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Compensation of respiratory acidosis

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

10

20

30

40

50

60

70

80

90PCO2 torr

Base Excess mmol/l

pH=7

,1

pH=7

,2

pH=7

,3

pH=7,

37

pH=7,4

3

pH=7,5

pH=7,6

Acute metabolic acidosis

Acute metabolic alkalosis

Acu

te r

esp

irat

ory

alk

alos

is

Acute resp. acidosis

Compensated met. Alcalosis

Compensated metabolic acidosis

Compen

sated

res.

alkalo

sis

Com

pens

ated

res

p. a

cido

sis

Page 39: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Case history IV

• 23 yo male, admitted for suicide attempt

• Has ingested large amount of aspirin

• At admission somnolent, difficult to make contact with

• BF 30 min-1 , HF 100 min-1, BP 142/88, t = 36.8 °C

• Lab: – Toxic levels of salicylates,– pH 7.25– pCO2 14 mmHg– HCO3- 8 mmol/l

Page 40: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Causes of metabolic acidosis

• Extensive desequilibrating load on buffering system – Loss of bicarbonate

from extensive buffering of acids

• Ketoacidosis – Diabetic– Alcohol – Starving

• Lactic Acidosis• Toxic substances

– Salicylates – Ethylen glycol– methanol

– Loss of bicarbonate by GIT

• By diarrhea • By fistula and stomia

• Loss of kidney regulation – Renal tubular acidoses – Kidney failure

Page 41: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Anion gap

• Helps to distinguish the cause of metabolic acidosis

• Increases when ions like lactate, ketoacids or sulfates are present in plasma. This signifies that the acidosis has been caused by the dissociation hydrogen ion from these molecules.

• AG = Na+ - HCO3- - Cl-

• norm: 10+/- 2 mmol/L

Page 42: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Electroneutrality principle

Ca+ Mg+HCO3

-

Buf-

XA-

Cl-

Na+

K+

AG

Page 43: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Metabolic acidosis

• Normal anion gap (10 mmol/L) – Losses of bicarbonate

• GIT (diarrhea)• Kidneys – RTA (renal

tubular acidosis)– Failure of bicarbonate

regeneration in Kidney• Aldosterone deficiency• Aldosterone insensitivity• RTA

– Given acidyfying salts of chloride

• Eg. Ammonium chloride

• Increased anion gap (>12-14 mmol/L)– Reduced excretion of

acids • Renal failure

– Overproduction of acids

• Ketoacidosis• Lactic Acidosis • Toxin ingestions

Page 44: Acid-base status assessment Stanislav Matoušek, Jiří Kofránek.

Causes of metabolic alkalosis

• Loss of acid by vomiting • Hyperaldosteronism• Liver failure • Kidney disorder – Bartter’s

syndrome• Non-adequate bicarbonate infusion


Recommended