+ All Categories
Home > Documents > Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Date post: 18-Feb-2016
Category:
Upload: buffy
View: 33 times
Download: 1 times
Share this document with a friend
Description:
Bioinformatics. Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail.com. Not only small molecules and QM, MM techniques rule the world. Central dogma of molecular biology. Term is due to Francis Crick The conversion DNA → protein is not direct, RNA is involved - PowerPoint PPT Presentation
34
Daniel Svozil Laboratoř Chemie a informatiky [email protected] Bioinformatics
Transcript
Page 1: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Daniel SvozilLaboratoř Chemie a informatiky

[email protected]

Bioinformatics

Page 2: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Not only small molecules and QM, MM techniques rule the world.

Page 3: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Central dogma of molecular biology

• Term is due to Francis Crick• The conversion DNA →

protein is not direct, RNA is involved

• DNA is the information store, RNA is messenger (mRNA), transporter (tRNA), biomolecular nanomachine (rRNA)

source: wikipedia.org

Page 4: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Nucleic acids• four letters (DNA, RNA)• sequence - AACTAACG (5’ → 3’)• DNA – double helix• RNA – “single stranded” helix, folding (double helical

regions, C2’ -OH → secondary and tertiary motifs)

Page 5: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

nucleoside

nucleotide

Page 6: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

B-DNA A-DNA Z-DNA

B

A

Z

Page 7: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

RNA secondary motifs

Nowakowski and Tinoco, Seminars in Virology 8, 153, 1997.

Page 8: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

RNA

source: http://complex.upf.es/~josep/RNA.jpg, http://www.biosci.ki.se/groups/ljo/images/phe_trna_large.jpg, http://rna.ucsc.edu/rnacenter/images/70s_atrna.jpg

Page 9: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Proteins• 20 letters• primary structure - sequence AMNTSSTVG (N-end → C-

end)

Alberts, Molecular Biology of the Cell, 5th Ed.

Page 10: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

• secondary structure (random coil, -helix, β-sheet, loops)

• several secondary structure elements form motifs

• e.g. greek key, β-α-β, HTH

Page 11: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

• tertiary structure (the arrangements of motifs into domain/s)

• quartenary structure (multimeric complexes)

Page 12: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Proteins

source:http://calstate.fullerton.edu/news/arts/2003/photos/protein-art.jpg

Page 13: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Proteins

source: Petsko, Ringe – Protein structure and function

Page 14: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

http://www.cellsignal.com/reference/pathway/NF_kappaB.html

Page 15: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Systems biology• focuses on the systematic study of complex interactions in

biological systems using a new perspective - holism instead of reductionism • holism – the properties of a system cannot be determined or

explained by its component parts alone • one of the goals of systems biology is to discover new

emergent properties • new field, boom since 2000, very little covered in CZ

Page 16: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Systems biology

source: wikipedia.org

Page 17: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Systems biology• based on mathematical modelling of systems, control

theory, cybernetics• engineering view on complex biological systems• e.g. answers questions about robustness of the given

system when one of its part fails• or about response of a systems upon the change of the

environmental conditions

Page 18: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

quantum chemistry

molecular dynamics

bioinformatics

systems biology

Page 19: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Bioinformatics• application of information technology to the field of

molecular biology, genomics and related biological disciplines

• tremendous amount of data• the creation and advancement of databases, algorithms,

computational and statistical techniques, and theory to solve problems arising from the management and analysis of biological data

Page 20: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Podle definičního třídění ruských vědců rozlišujeme dva obory paranormálních jevů: bioinformatika a bioenergetika. Bioinformatika (tzn. mimosmyslové vnímání, ESP) zahrnuje získávání a výměnu informací mimosmyslovou cestou (nikoli normálními smyslovými orgány). V podstatě rozlišujeme následující formy bioinformace: hypnózu (kontrolu vědomí), telepatii, dálkové vnímání, prekognici, retrokognici, mimotělní zkušenost, "vidění" rukama nebo jinými částmi těla, inspiraci a zjevení.

zdroj: http://www.esoterika.cz/clanek/2992-mimosmyslova_spionaz_dalkove_pozorovani_i_.htm

Page 21: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Bioinformatics

• sequence analysis (sequence bioinformatics)• structural analysis (structural bioinformatics)• functional analysis (systems biology)

Page 22: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

• genetic code• gene• genome, genomics

• large data sets• high throughput

• human genome• DNA localized mainly in nucleus, each nucleus carries the

whole genetic information• 3.2 billions bp• 25 000 – 30 000 genes• ca 1,5 % codes for proteins, the rest - junk DNA

• what is proteome?• proteomics

• Is it more difficult to study genome or proteome?

Page 23: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Sequential bioinformatics

• reconstruction of sequence fragments• searching of genes and other interesting regions in the genome• junk DNA – 95% of human genome is made by non-coding

sequences, either no function, or not yet understood• querying huge genomes for a given sequence• comparison of genes within a specie – similarities between protein functions

• comparison of genes between species – organism's evolutionary relationships (phylogenetic analysis)

Page 24: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Sequence alignment• Procedure of comparing sequences• Point mutations – easy

• More difficult example

• However, gaps can be inserted to get something like this

ACGTCTGATACGCCGTATAGTCTATCTACGTCTGATTCGCCCTATCGTCTATCT

ACGTCTGATACGCCGTATAGTCTATCTCTGATTCGCATCGTCTATCT

ACGTCTGATACGCCGTATAGTCTATCT----CTGATTCGC---ATCGTCTATCT

gapless alignment

gapped alignmentinsertion × deletionindel

Page 25: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Flavors of sequence alignmentpair-wise alignment × multiple sequence alignment

Page 26: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Flavors of sequence alignmentglobal alignment × local alignment

global

local

align entire sequence

stretches of sequence with the highest density of matches are aligned, generating islands of matches or subalignments in the aligned sequences

Page 27: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Identity matrix

Scoring systems I• DNA and protein sequences can be aligned so that the

number of identically matching pairs is maximized.

• Counting the number of matches gives us a score (3 in this case). Higher score means better alignment.

• This procedure can be formalized using substitution matrix.

A T T G - - - TA – - G A C A T

A T C G

A 1

T 0 1

C 0 0 1

G 0 0 0 1

Page 28: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Scoring systems II• For nucleotide sequences identity matrix is usually good enough.• For protein sequences identity matrix is not sufficient to describe

biological and evolutionary proceses.• It’s because amino acids are not exchanged with the same

probability as can be conceived theoretically.• For example substitution of aspartic acids D by glutamic acid E

is frequently observed. And change from aspartic acid to tryptophan W is very rare.

• Why is that?1. Triplet-based genetic code

GAT (D) → GAA (E), GAT (D) → TGG (W)2. Both D and E have similar properties, but D and W differ considerably. D

is hydrophylic, W is hydrophobic, D → W mutation can greatly alter 3D structure and consequently function.

Page 29: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Substitution matrices

small, polar

small, nonpolar

polar or acidic

basic

large, hydrophobic

aromatic

Zvelebil, Baum, Understanding bioinformatics.

Positive score – frequency of substitutions is greater than would have occurred by random chance.

Zero score – frequency is equal to that expected by chance.

Negative score – frequency is less than would have occurred by random chance.

Page 30: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Sequence database search

BLAST

Google of sequence world

Page 31: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Phylogenetic analysis

Page 32: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Structural bioinformatics• the function of chemical moiety is given by its structure• while DNA structure is “given” (double-helix), RNA and

proteins can accommodate very different conformations (i.e. specific arrangements of atoms in 3D space)

• structural bioinformatics covers• analysis of the NA and proteins structure • prediction of structure from the sequence

Page 33: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

Protein structure prediction• secondary structure prediction

• the conformational state of each residue is predicted as H (helix), E (extended, β-sheet), C (coil)

• accuracy: 80%• tertiary structure prediction

• why?• many sequences are known, not that many 3D structures has been

solved• some proteins (e.g. transmembrane) are difficult to characterize

experimentally• many proteins have known function, but unknown structure (which is

however needed to understand their behavior in detail)• ab initio, threading, homology modelling

Page 34: Daniel Svozil Laboratoř Chemie a informatiky daniel.svozil @gmail

CASP• Critical Assessment of Structure Prediction• http://predictioncenter.org/• since 1994, every 2 years, CASP10 in preparation

• predict solved, but not publicly released structures

• competition of individual groups in 3D prediction:• human groups – answer in 14 days• software (automated prediction) – answer in 48 hours


Recommended