+ All Categories
Home > Documents > Department of Chemical Engineering, University of Santiago de...

Department of Chemical Engineering, University of Santiago de...

Date post: 24-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
25
I. Noya, S. González-García*, G. Feijoo, M.T. Moreira Department of Chemical Engineering, University of Santiago de Compostela, Santiago de Compostela, Spain [email protected] 22 nd June 2017 5 th International Conference on Sustainable Solid Waste Management Athens, 21–24 June 2017
Transcript
Page 1: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

I. Noya, S. González-García*, G. Feijoo, M.T. Moreira

Department of Chemical Engineering, University of Santiago de Compostela,

Santiago de Compostela, Spain

[email protected]

22nd June 2017

5th International Conference on Sustainable Solid Waste Management

Athens, 21–24 June 2017

Page 2: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

42% ORGANIC WASTE

18% PAPER/CARDBOARD

15% PACKAGING WASTE (BRICKS AND PLASTICS)

6% GLASS

How to manage??

In Galicia, each persongenerates ≈1 kg MSW per day

Population ≈ 2,765,940 hab

≈1,000,000 tons of MSW are generated per year

REST FRACTION(nappies, plasters, plates)

Page 3: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

TRIAGE RECOVERED MATERIALS(Plastics, Metals, Paper/cardboard)

RECYCLING COMPANIES

PACKAGING WASTE

SORTING PLANT

ORGANIC WASTE + REST

TRIAGE REFUSE‐DERIVED FUEL (RDF) PRODUCTION INCINERATION

LANDFILL

RDF RENEWABLE ENERGY

Biogas RENEWABLE ENERGY

Rejected materials

LANDFILLING

RDF PLANT THERMOELECTRIC PLANT

GLASS

PAPER/CARDBOARD

Page 4: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

TRIAGE

ORGANIC WASTE

PRE‐TREATMENT PLANT

PACKAGING WASTE + REST

TRIAGE

LANDFILLBiogas RENEWABLE 

ENERGY

LANDFILLING

SORTING PLANT

COMPOSTING COMPOST

AEROBIC FERMENTATION PLANT

RECOVERED MATERIALS(Plastics, Metals, Paper/cardboard)

RECYCLING COMPANIES

GLASS

PAPER/CARDBOARD

Page 5: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

LANDFILLING

SCENARIO

COMPOSTING

SCENARIOINCINERATION

SCENARIO

Impact Categories Acronyms Units

Climate Change CC kg CO2 eq

Terrestrial Acidification TA kg SO2 eq

Freshwater Eutrophication FE kg P eq

Marine Eutrophication ME kg N eq

Fossil Depletion FD kg oil eq

Method: ReCiPe Midpoint (H)

FU: 1 kg MSW treated

Scope: cradle‐to‐grave

System expansion approach: Avoided fossil energy Avoided mineral fertilisation Avoided materials

Page 6: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

INPUTS

MSW flow

Fossil electricity consumption

Fossil fuels use

Transport activities

OUTPUTS

PRODUCTS EMISSIONS

Renewable electricity

Recovered materials

Compost 

Diffuse emissions

Composting stage

Organic (compost) fertilisation N2O

N2O

CO2

Page 7: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

INCINERATIONSCENARIO

Fossil fuels use

Renewable electricity generation

Electricity consumption

‐80%

‐60%

‐40%

‐20%

0%

20%

40%

60%

80%

CC TA FE ME FD

kg CO2 eq kg SO2 eq kg P eq kg N eq kg oil eq

Relativ

e contrib

utions

Diffuse emissions Fossil electricity consumption

Fossil fuels use Transport activities

Renewable electricity generation Recovered materials

Page 8: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

COMPOSTINGSCENARIO

Recovered materials

Composting emissions

‐100%

‐80%

‐60%

‐40%

‐20%

0%

20%

40%

60%

80%

CC TA FE ME FD

kg CO2 eq kg SO2 eq kg P eq kg N eq kg oil eq

Relativ

e contrib

utions

Difusse emissions Compost emissionsAvoided emissions ‐ compost application Fossil electricity consumptionRenewable electricity generation Recovered materialsTransport activities

Composting stage Compost in soils

Page 9: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

‐80%

‐70%

‐60%

‐50%

‐40%

‐30%

‐20%

‐10%

0%

10%

20%

30%

40%

CC TA FE ME FD

kg CO2 eq kg SO2 eq kg P eq kg N eq kg oil eq

Relativ

e contrib

utions

Diffuse emissions Fossil electricity consumption Renewable electricity generation

Fossil fuels use Recovered materials Transport activities

LANDFILLINGSCENARIO

Transport activities

Renewable electricity generation

Page 10: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

However, environmental results are highlydependent on the impact category

‐100,00

‐80,00

‐60,00

‐40,00

‐20,00

0,00

20,00

CC TA FE ME FD

Relativ

e relatio

ns (%

)

INCINERATION COMPOSTING LANDFILLING

COMPARATIVE ASSESSMENT

Page 11: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

SELECTION OF THE MOST SUSTAINABLE ALTERNATIVE FOR MSW MANAGEMENT IN GALICIA

SOCIAL INDICATORS

ECONOMIC INDICATORS

ENVIRONMENTAL INDICATORS

Employment

Safety and public health

Social perception

INCINERATION SCENARIO

COMPOSTING SCENARIO

LANDFILLINGSCENARIO

Capital costs

O&M costs

Revenues

Climate Change

Terrestrial Acidification

Freshwater Eutrophication

Marine Eutrophication

Fossil Depletion

Criteria

Alternatives

Goal

Saaty (1980). The Analytical Hierarchy Process.

Multicriteria decisiontool to solve decisionproblems affected bymultiple independentfactors

AHP method

Page 12: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

EMPLOYMENT SAFETY & PUBLIC HEALTH SOCIAL PERCEPTION

Great number of employees is preferable

Number of employees dealing with waste 

treatment

Percentage of the population that are satisfied with MSW 

management model

Great percentage of population is preferable

Percentage of valorised waste & Percentage of 

waste disposed in landfill

Higher waste valorisationLower waste in landfill 

Page 13: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

Waste option Year  Capital Cost  Units Reference

Landfilling 2003 0.0057x0.61 106 € Tsilemou and Panagiotakopoulos (2006)

Incineration2003 0.0049x0.80 106 € Tsilemou and Panagiotakopoulos (2006)

2006 0.0035x0.83 106 € Murphy and McKeogh (2006a,b)

Composting 2005 0.0021x0.76 106 € Tsilemou and Panagiotakopoulos (2005)

x = design capacity (103 t/year)

Waste option Year  O&M Cost (O) Units Reference

Landfilling 2003 103.86x‐0.30 €/t Tsilemou and Panagiotakopoulos (2006)

Incineration2003 726.37x‐0.29 €/t Tsilemou and Panagiotakopoulos (2006)

2006 755.97x‐0.29 €/t Murphy and McKeogh (2006a,b)

Composting 2005 1624x‐0.48 €/t Tsilemou and Panagiotakopoulos (2005)

x = plant capacity (103 t/year)

CAPITAL COSTS

O&M COSTS

REVENUES

Page 14: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

0,0

0,1

0,2

0,3

0,4

0,5

Economic Social Environmental Overall0,0

0,2

0,4

0,6

0,8

1,0Sc

eanr

ios

scor

e

Crit

eria

sco

re

LANDFILLING INCINERATION COMPOSTING

However, different conclusions can be drawnwhen each criterion is analysed separately

SENSITIVITY ANALYSIS

Page 15: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

Composting was found as the best option assuming a similar weight for the

three pillars of sustainability, followed by incineration.

However, AHP method shows as main outcomes can change when each

criterion is analysed separately:

Composting would be again the most favourable alternative from an

environmental perspective.

Incineration would be the preferable option on the basis of popular

opinion (social criteria).

Landfilling would lead to the best economic profile.

A sensitivity analysis may help to estimate how variations on criteria priority

can affect final results.

Page 16: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es
Page 17: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

Questions

Page 18: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es
Page 19: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

Inputs/Outputs SOGAMA LOUSAME NOSTIÁN LANDFILLING

INPUTS

Population (inh) 2282553 86605 396782 2282553MSW flow (t) 1.00 1.00 1.00 1.00Organic waste (t) 0.97 0.34 0.24 0.97Packaging (t) 0.03 0.66 0.76 0.03Electricity use (kWh) 81.0 37.1 37.1* 0.00*NG use (kWh) 527 ‐ ‐ 11.3Transport (t∙km) 51.3 7.87 6.76 51.3

OUTPUTS ‐PRODUCTS

Electricity generation (kWh) 637 10.5 43.3 58.4Electricity origin  Incineration + Landfill Landfill AD + Landfill  LandfillRecovered materials (kg) 34.0 177 56.8 ‐Paper/Cardboard (kg) 2.55 (7.5%) 58.2 (32.9%) 14.1 (24.8%) ‐Plastics (kg) 10.9 (32.1%) 61.8 (34.9%) 28.9 (50.9%) ‐Glass (kg) 3.30 (9.7%) 7.97 (4.5%) ‐ ‐Metals (kg) 17.3 (50.9%) 19.9 (11.2%) 13.8 (24.3%) ‐Compost (kg) ‐ 6.63 (2% OF) 94.7 (39% OF) ‐

OUTPUTS ‐EMISSIONS

Origin  MSW Plant Composting  Avoided Composting Avoided LandfillCH4 (air) (kg) 12.0 0.03 ‐ 0.43 ‐ ‐NOx (air) (kg) 0.36 ‐ ‐ ‐ ‐ ‐SOx (air) (kg) 0.03 ‐ ‐ ‐ ‐ ‐N2O (air) (kg) ‐ 2.16 0.004 31.0 0.06 ‐NH3  (air) (kg) ‐ 0.009 0.03 0.13 0.47 ‐NO3

‐ (water) (kg) ‐ 1.16 0.36 16.6 5.19 ‐PO4

‐3 (water) (kg) ‐ 0.003 0.003 0.05 0.04 ‐

SOGAMA:Organic waste = 781089 t/yPRTE = 576651 t/y (74%)Landfill = 204438 t/y (26%)

Page 20: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

Product Price Units Reference

Energy 50.14 €/MWh RD 413/2014Orden IET/1045/2014 

Plastic (PEAD/PEBD) 895 €/ton ANARPLA (June 2016)

Plastic (PET) 720 €/ton ANARPLA (June 2016)

Paper/Cardboard 83 €/ton ASPAPEL (December 2016)

Metals (Steel) 303 €/ton METALRADAR (March 2017)

Metals (Aluminium) 1785 €/ton METALRADAR (March 2017)

Compost 28 €/ton COGERSA (2016)

Updated costs:

http://www.energiaysociedad.es/manenergia/2‐2‐el‐marco‐normativo‐espanol/http://www.energiaysociedad.es/manenergia/3‐5‐regulacion‐espanola‐de‐las‐energias‐renovables/

i = Interest rate (%)

n = Time period (reference year – present)

Page 21: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

Organic fertilisers:

RD 506/2013: Fertilisation (RD 865/2010: Growing media) [RD 535/2017]

Directive 2008/98; Law 22/2011 (raw materials recovered waste)

COMPOST (organic amendment) – Annex IV (RD 506/2013):

Residues from waste treatment plants (19)

Waste from aerobic treatment of MSW (19.05)

Waste from anaerobic treatment of MSW (19.06)

MSW (including selectively collected fractions)

COMPOST Requirements:

% Organic matter/% organic N

Moisture

Heavy metals and microorganisms

Right granulometry

Page 22: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Relativ

e contrib

ution

Landfill Incineration Recycling Composting/digestion

Page 23: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

0

10000

20000

30000

40000

50000

60000

70000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GDP

Landfill Incineration Recycling Composting and digestion GDP Linear (GDP)

Page 24: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

The Analytical Hierarchy Process (AHP) is a robust and flexible

multicriteria decision making tool designed to deal with complex decision

problems affected by multiple independent factors

Fourmain steps:

1. Definition of the problem

2. Structuration of the decision hierarchy in three levels:

Goal

Criteria

Alternatives

3. Construction of the pairwise comparison matrices

4. Determination of composite weight for each alternativeSaaty (1980). The Analytical 

Hierarchy Process.

Page 25: Department of Chemical Engineering, University of Santiago de ...uest.ntua.gr/athens2017/proceedings/presentations/Gonzalez-Garcia… · Santiago de Compostela, Spain Sara.gonzalez@usc.es

Criteria i1 Criteria i2 Criteria i3

Criteria i1 1 1/5 1/4

Criteria i2 5 1 1

Criteria i3 4 1 1

Alternative j1 0,5813

Alternative j2 0,3092

Alternative j3 0,1096

ALTERNATIVES/CRITERIA

Preference number Explanation

1 Equally important

3 Weak importance

5 Strong importance

7 Very strong importance

9 Absolute importance

2, 4, 6, 8 Intermediate values

[Saaty’s Fundamental Scale for AHP preference]

CONSISTENCY RATIO

[Eigen vector for alternative priority]


Recommended