+ All Categories
Home > Documents > Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Date post: 06-Jan-2016
Category:
Upload: candid
View: 35 times
Download: 1 times
Share this document with a friend
Description:
Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí. „Kadmiové tyče se vysouvaly z pomocných reaktorů, magnetická čerpadla čerpala kapalný sodík do chladících hadic, pancíř zadních palub se zachvěl a současně slabý šramot uvnitř stěn prozradil, - PowerPoint PPT Presentation
26
erné zdroje pro vesmír aneb jak získat energii tam, kde Slunce ne Kadmiové tyče se vysouvaly z pomocných reaktorů, magnetická čerpadla čerpala kapalný sodík o chladících hadic, pancíř zadních palub se zachvěl a současně slabý šramot uvnitř stěn prozradil e pohyblivé kontrolní přístroje se už vydaly na mnohakilometrovou cestu … Celý kosmický koráb e naplnil šumem a pohybem …“ S. Lem: „Nepřemožitelný“ Vladimír Wagner Ústav jaderné fyziky AVČR, 250 68 Řež E_mail: [email protected] WWW: hp.ujf.cas.cz/~wagner/ od ůsoby využití jaderných zdrojů 2.1 Typy jaderných zdrojů 2.2 Využití pro zásobování teplem a elektrickou energií 2.3 Zdroj energie pro pohon dioizotopové zdroje 3.1 Historie využití 3.2 Současné i budoucí využití 3.3 Bezpečnostní aspekty 4) Jaderné reaktory 4.1 Historie využití 4.2 Hlavní cíl - bezpečnost a efektivita 5) Termojaderné zdroje energie 5.1 Fyzikální principy a technické problémy 5.2 Projekty - zatím jen na papíře 6) Anihilace 7) Závěr
Transcript
Page 1: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

„Kadmiové tyče se vysouvaly z pomocných reaktorů, magnetická čerpadla čerpala kapalný sodík do chladících hadic, pancíř zadních palub se zachvěl a současně slabý šramot uvnitř stěn prozradil, že pohyblivé kontrolní přístroje se už vydaly na mnohakilometrovou cestu … Celý kosmický koráb se naplnil šumem a pohybem …“

S. Lem: „Nepřemožitelný“ Vladimír Wagner

Ústav jaderné fyziky AVČR, 250 68 Řež E_mail: [email protected] WWW: hp.ujf.cas.cz/~wagner/

1) Úvod

2) Způsoby využití jaderných zdrojů

2.1 Typy jaderných zdrojů 2.2 Využití pro zásobování teplem a elektrickou energií 2.3 Zdroj energie pro pohon

3) Radioizotopové zdroje

3.1 Historie využití 3.2 Současné i budoucí využití 3.3 Bezpečnostní aspekty

4) Jaderné reaktory

4.1 Historie využití 4.2 Hlavní cíl - bezpečnost a efektivita

5) Termojaderné zdroje energie

5.1 Fyzikální principy a technické problémy 5.2 Projekty - zatím jen na papíře

6) Anihilace

7) Závěr

Page 2: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

ÚvodJaderné zdroje – velmi efektivní a koncentrované

Využití: 1) Energie uvolněná v rozpadu jader2) Energie uvolněná ve štěpné reakci těžkých jader3) Energie uvolněná při slučování lehkých jader4) Energie uvolněná při anihilaci

Princip zdroje: 1) Chemický - ~ 0,0000001% ~ 107 J/kg 2) Jaderný – efektivita ~0,1% - ~1% štěpení 8∙1013 J/kg fůze 3∙1014 J/kg 3) Částicový, anihilační - ~1% - ~100% kompletní anihilace (E = mc²) 9∙1016 J/kg

Raketoplán – chemický pohon Odyssea 2001 Discovery - jaderný pohon Star Treck Enterprise - anihilace

Page 3: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Typy jaderných zdrojů

Radioizotopové zdroje – využívají rozpad radioaktivních jader, prozatím nejčastěji využívané (několik desítek sond, hlavně k vnějším planetám)

Jaderné reaktory – využívají štěpení velmi těžkých jader indukované záchytem neutronu umožňují velký výkon – největší využití u ruských radarových družic RORSAT

Termojaderné zdroje – využívají slučování lehkých prvků, stabilní průběh termojaderné reakce v laboratoři zatím nezvládnut

Anihilační – využívají anihilace hmoty s antihmotou, největším problémem je získávání antihmoty

Výhody – 1) vysoká efektivita produkce energie 2) nezávislost na okolním prostředí (nepotřebují sluneční světlo a nevadí jim silná elektrická i magnetická pole nebo radiace) 3) v budoucnu dostupnost ve všech oblastech vesmíru

Nevýhody – 1) Možná bezpečnostní a ekologická rizika 2) Často jen ve velkém provedení, technologická náročnost, vysoká cena Teodor Rotrekl

Page 4: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Využití pro zásobování teplem a elektrickou energií

Pilotované i bezpilotní sondy potřebují k udržení životních i pracovní podmínek dostatek tepelné i elektrické energie

Theodor Rotrekl Tim White

Velice rychlý pokles intenzity slunečního záření se vzdáleností ( 1/r2). Hlavně ve velkých vzdálenostech od Slunce nelze sluneční baterie uplatnit.

Práce ve velkých vzdálenostech od Slunce, na odvrácených stranách planet, pod hustou atmosférou

Page 5: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

1) Reaktivní motor - produkce horkého plynu (plazmy), který vyletuje z trysek. Ohřívání plynu (nejlépe vodíku) pomocí tepla z jaderného či termojaderného reaktoru

Zdroj energie pro pohon

2) Pulzní motor – minivýbuchy, buď přímo malé jaderné či termojaderné bomby, nebo termojaderné palivo zapalováno lasery

3) Iontové motory – jaderné zdroje produkují elektřinu pro urychlování iontů. Elektrické pole urychluje nabité ionty na vysoké výtokovou rychlostí a tak urychluje kosmickou loď

Výhody: 1) Dlouhá doba práce 2) Větší účinnost využití paliva 3) Možnost libovolného počtu zastavení a spuštění

malé zrychlení (nevhodné pro starty z povrchu planet)

Zatím se většinou uvažoval rychlý reaktor

Test iontového motoru sondy Deep Space 1

Projekt zkoumající využití výbuchů klasických jadernýchči termojaderných bomb byl projekt Orion (viz obr)

Page 6: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Test iontového motoru sondy Deep Space 1 První sonda s iontovým motorem (solárním)

Deep Space 1 (vypuštěna: 24. 10. 1998)

Účel: zkoumání nových technologií pro vesmírný výzkum

Iontový motor: ionty Xe ( celkově 81 kg) urychlené na 30 km/s

Doba práce – 20 měsícůCelková udělená rychlost 4.5 km/s

28. 7. 1999 průlet kolem asteroidu Braillezáří 2001 – průlet kolem komety Borrelly

účinnost u Deep Space 10 větší

zdrojem energie solární baterie

Page 7: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Radioizotopové zdroje

Pokles výkonu radioizotopového zdroje je dán poklesem radioaktivitya je exponenciální

Princip:

1) Rozpad radioaktivních jader uvolňuje se teplo (např. izotopy s vhodnými poločasy rozpadu 90Sr – 28,8 r, 137Cs – 30,1 r, 210Po – 0,38 r a 238Pu – 87,7 r) 2) Termoelektrický článek přeměňuje teplo na elektřinu ( Sebeckův jev - U T, účinnost 5 – 10%)

Výhody: 1) dlouhodobá stabilita za všech podmínek (i v silných magnetických polích a ve vysoké radioaktivitě) 2) Nemá pohyblivé části → vysoká spolehlivost

Nahrazení termolelektrického článku tzv. Stirlingovým motorem → efektivnější převod tepelné energie na elektrickou(až 20 %) nevýhodou jsou pohyblivé části

Nevýhody: 1) Pokles výkonu v čase daný poločasem rozpadu daného radioizotopu 2) Možná radiační a ekologická rizika

Page 8: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Historie využití

Nutno podmínka pro vyslání sondy k vnějším planetám

Sonda Cassini a její radioizotopové zdroje

Pioneer 10

Hmotnost 10,9 kg PuO2 , délka 113 cm

Cassini - tři zdroje, dohromady: 13,182 kW tepelných 0,882 kW elektrických

křemíko-germániovými (SiGe) termoelektrickými dvojicemi

U jednoho konce je 1273 K (1000oC) a u druhého 573 K (300oC).

U Jupitera ekvivalentní výkon slunečních článků o ploše 100 -200 m2.

Využití Sebeckova jevu, vznik napětí na stykudvou kovů, které mají konce ohřáty na různé teploty

Ue = (1-2)T

Page 9: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Současné i budoucí využití

Instalace zdroje SNAP-27

Sonda Ulysses se vydává na pouť k Saturnu

Radioizotopové zdroje napájely stanice, které umístěné adlouhodobě pracující na Měsíci (musely přežít i lunární noc)

Napájely elektřinou a dodávaly teplo všem sondám, které letěly k velkým planetám Sluneční soustavy

První testovací lety využívaly krátkodobější izotop 210Po (necelý rok)Většina pak dlouhodobější 238Pu ( 88 let)

Výkony od desítek watů do desítek kilowat

Radioizotopové zdroje měly i přistávací moduly Viking na Marsu

Přistávací modul sondy Viking

Page 10: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Bezpečnostní aspekty

Radioizotopové články sondy Nimbus B-1 na mořském dně po havárii nosné rakety (1968)

Havárie sond (nevedly k ohrožení):

do r. 1964 – konstrukce zajistila shoření zdroje v atmosféře po r. 1964 – konstrukce zajišťuje dopad zdroje v kompaktní podobě (PuO2 – keramický materiál, grafitová a iridiová obálka) Nimbus B-1, SNAP-27 Apolla 13, Mars 8 (1996)

Havárie ruských družic s jadernými reaktory na palubě – viz dále

Pouzdro každou havárii přežije a zabraňuje průniku radioaktivity do životního prostředí

Sonda Cassini, proti ní byla řada protestů ekologických skupin

Zatím žádná havárie nevedla k ohrožení životního prostředí a zdraví lidí

Page 11: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Jaderné reaktory

Proč jaderné reaktory? – v 1kg 235U 500 000 krát více energie než v rozpadu 1kg 238Pu

Je účelný pro projekty, kde jsou potřeba velké výkony zdrojů

Zdroj energie: štěpení

Štěpná reakce - štěpení jádra samovolné nebo po získání energie - obvykle se dodá energie záchytem neutronu - doprovázena vznikem neutronů s energiemi v oblasti jednotek MeV ( 2 - 3 neutrony na štěpení) (část hned – část zpožděná)

Řetězová štěpná reakce: Štěpení nuklidů 235U, 239Pu ... záchytem neutronu 235U + n → 236U* : 85 % - štěpení 15 % - emise fotonu

Multiplikační faktor k - počet neutronů následující generace neutronů produkovaných na jeden neutron předchozí generace

k < 1 podkritický systémk = 1 kritický systémk > 1 nadkritický systém

štěpení na dva přibližně stejně velká jádra

při štěpení se produkuje

i několik neutronů

Štěpení - vznik štěpných produktůZáchyt emise fotonu rozpad beta vznik transuranů

Page 12: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Typy reaktorů:

1) Klasické na pomalé neutrony

2) Rychlé (množivé) na rychlé neutrony

Nemoderované neutrony → nutnost vysokého obohacení uranu 20 - 50 % 235U (ekvivalentně 239Pu)

Vysoké obohacení → vysoká produkce tepla →nutnost výkonného chlazení → roztavený sodík, olovo (teplota 550oC)

Velmi vysoké hodnoty účinných průřezů záchytu neutronů pro malé energie neutronů (10-2 eV) Nutnost zpomalování neutronů - moderátor

Je kompaktnější, produkuje více energie – dlouhodobá zkušenost s reaktory na ponorkách

Produkce 239Pu: 238U + n → 239U(β-) + γ → 239Ne (β-)→239Pu

Z 239Pu více neutronů (3 na jedno štěpení) → produkce více plutonia než se spotřebuje (plodivá zóna)

Palivo: 1) přírodní uran - složen z 238U a jen 0.72 % 235U 2) obohacený uran - zvýšení obsahu 235U na 3-4% (klasické reaktory)

Např: ruské ponorky třídy Alfa – kompaktní (4,5 m x 7,5 m) rychlý reaktor chlazeny kapalnou směsí olova a bismutu, výkon 175 MW Ruská ponorka třídy Akula Typhoon

vodou chlazený reaktor

Page 13: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Historie využití

REAKTOR

NÁDRŽ NA VODÍK

TURBOČERPADLO

VÝFUK TURBÍNY

Studené zkoušky motoru NERVAPrincip motoru NERVA

H. Finger vedoucí projektu

Malý reaktor SNAP-10A zdroj energie - družice SNAPSHOOT (1965) - výkon

Projekt NERVA: raketový motor na bázi jaderného reaktoru plánován jako třetí stupně raket

Reaktor ohřívá vodík pohon expandující horký plyn

Nedokončen – zastaveno – hlavněz finančních důvodů –chyběla mise,která by se bez něj neobešla

USA:

Řada velmi úspěšných testů

Page 14: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Malý ruský kosmický reaktor TOPAZ

SSSR - Rusko

Jaderný reaktor na ruských vojenských družicích – program RORSAT (napájel radar), léta 1967-1988 - 35 družic v sérii Kozmos (první Kozmos 198)vysoce obohacen 235U (31,1 kg) , účinnost 2-4%, elektrický výkon 3-5 kWaktivní činnost do 134 dní – po jejím ukončení vyneseny na vysokouorbitu 900 -1000 km

Tři havárie – 1) zničení jedné z družic krátce po startu 2) zbytky Kozmosu 954 spadly na západní Kanadu 3) Kozmos 1402 shořel v atmosféře

Reaktor TOPAZ I (rok 1987) elektrický výkon 5 - 6 kW, hmotnost okolo 1000 kg, účinnost 5 – 10 % nejméně po 180 dnů(Kozmos 1818 a 1867) a může pracovat rokchlazení tekutým kovem (slitina sodíku a draslíku) (pracovní teplota 610oC)

Vylepšená varianta TOPAZ II – do vesmíru se už nedostal, testován i NASA

Základ společné spolupráce USA a RuskaVyužití ruských zkušeností

Page 15: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Zatím nenaplněné sny - projekt Orion

Snaha o vybudování pohonu na základě výbuchů „malých jaderných bomb“ blízko lodi. Ty „postrkovaly“ loď díky odrazné desce.

Studie probíhala v letech 1958 – 1965 ↔ vedoucí T. Taylor

Velmi krátké působení velmi velké síly ↔ velké přetížení ↔ nutnost rozložení zrychlování

Řada studií i praktických testů (např. odolnosti odrazné desky)

Kosmická loď Orion v blízkosti Jupitera Model pro testování odrazné desky Náčrt lodi Orion

Velmi krátký průběh exploze → poměrně malé poškození desky

Testy pomocí chemických explozí – let sto metrů (šest nábojů)(září 1959) – prokázala stabilita pulzního pohonu

Page 16: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Uvažovala se řada typů pro cestu na Mars i dále, včetně mezihvězdných

vždy jako lodě s lidskou posádkou

V současnosti opětné oživení zájmu i o tuto koncepci

Zpočátku plány i pro použití v atmosféře, později pouze ve vesmíru

Uvažovalo se použití i vodíkových bomb – projekt Daedalos

Radiační riziko, možnost ohrožení životního prostředí

animaci spusťte kliknutím na ni

Page 17: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Projekt Prometheus – nové jaderné reaktory

Projekt sondy obíhající kolem Jupitera a přesunující se od jednoho měsíce k druhému

Návrat na Měsíc a cesta na Mars, komplexní sondy do vzdálenýchčástí sluneční soustavy → potřeba jaderných zdrojů energie a pohonu

Start programu v roce 2003

Let lidí na Mars by mohly jaderné zdroje velmi ulehčit

Spolupráce NASA s DOE (Úřad pro energetiku USA)maximální využití zkušeností předchozích projektůspolupráce s Ruskem (reaktor TOPAZ)

Vývoj nových radioizotopových zdrojů a hlavně reaktorůpro pohonné jednotky i pro dodávku energie a tepla

Pohonná jednotka blízko Země

Page 18: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

SAVE 400 - reaktor - zdroj elektrické energie pro iontový motor i přístroje sondy

Dlouhodobě pracující motor s malým zrychlením cesty ke vnějším planetám

Tepelný test reaktoru SAVE 30

Výkon: 400 kW tepelný, 100 kW elektrickýPalivo: vysoce obohacený uran (97% 235U)Typ : rychlý reaktorChlazení: plyn (He+Xe) T ~ 1000oCHmotnost: 512 kg (100 kg 235U)

Spolupráce NASA a Los Alamos

Koncept sondy s jaderným iontovým motorem pro průzkum vnějších částí Sluneční soustavy (NASA) Sonda pro průzkum ledových měsíců Jupitera

Page 19: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Jaderné reaktor pro vozítka a přistávací moduly

HOMER-15 - malý reaktor, vysoce obohacený uran (72 kg)

Marsovské vozítko

Výkon: 15 kW tepelných a 3kW elektrické

Test reaktoru HOMER 15

Přistávací modul na Marsu

V některých variantách by mohl být nahrazován radioizotopovým zdrojem

Soužil by pro menší stanice, přistávací pouzdra, vozítka a sondy

Page 20: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Hlavní cíl - bezpečnost a efektivita

Vysoká bezpečnost - podkritický při všech haváriích

Malá radiační zátěž i během provozu možnost práce na oběžné dráze okolo Země

Na oběžnou dráhu se dostává před zahájením činnosti – vysoce radioaktivní jsou produktyštěpení a transurany, uran není tak nebezpečný

Při každé havárii zůstává uran kompaktně v celku a v obalu – co nejodolnější obal schopný efektivně odolávat teplu a destruktivním silám

SAFE 400 – rotující kontrolní tyče z berylia na jedné straně (odráží neutrony) a absorpční vrstvy na druhé, pokud nerotují, reaktor je podkritický → není štěpná reakce

Schematický náčrtek reaktoru SAFE 400

Hledání co nejefektivnější konverze tepelné energie na elektrickou a pohybovou.

Hlavní důraz na ekologickou bezpečnost za všech okolností – nutnost přesvědčit o ní veřejnost

Page 21: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Termojaderné zdroje energie

Slučování lehkých prvků: d, t, 3He

Vhodné reakce jsou d + t a d + 3He

Jaderné reakce za vysokých teplot (107 - 109 K) termojaderné reakce

Výhoda oproti štěpení je poměrně malá produkceradioaktivních elementů (pouze reakcemi neutronů s materiálem komory

V přírodě probíhá jaderná fůze na SlunciTeodor Rotrekl: „Záhady pro zítřek“

Uvolnění velkého množství energie v podobě kinetické energie produktů nebo gama záření

Page 22: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Fyzikální principy a technické problémy

Zdroj pohonu (např. termojaderné mikrovýbuchy horké plazma tryská s vysokou rychlostí) i energie (termojaderné elektrárny)

Problém umělé fůze – zajištění produkce a udržení dostatečně horkého a hustého plazmatu zatím nezvládnuto ani na Zemi

ITER - mezinárodní termojaderný experimentální reaktor: Prstenec: poloměr 8 m, výška 9 m Výkon 500 MW, vyprodukuje 5 krát více energie než spotřebuje

Experimentálního zařízení JET v Culhamu (výška 12 m, průměr 15 m)

Experimentální "termojaderné reaktory" typu Tokamak: Prstencová komora - prstencové magnetické pole (výška komory 2 - 4 m, B = 2 - 5 T, proudy 2∙106 A):

Lawsonovo kriterium - podmínka pro to, aby termojaderná reakce produkovala více energie než se spotřebuje na ohřev paliva:Pro DT reakci: τρ ≥ 3∙1020 s∙m-3

τ - doba udržení horké plazmy,ρ - hustota jader v plazmatu

Teplota 108 - 109 K

Page 23: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Projekty - zatím jen na papíře

Mikrofúze inicializovaná lasery, antihmotou

Projekt fúzně poháněné sondy využívající proinicializaci antiprotony skladované v magnetickémprstenci.

Nejpropracovanější projekt Pensylvánské university – ICAN-II

využívaly by se reakce deuteria a tritia katalizované neboinicializované antiprotony

Page 24: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Pohon založený na antihilaci

Setkání hmoty a antihmoty – anihilace → přeměna hmoty na fotony a mezony → mezony se rozpadají v konečném důsledku na fotony → uvolnění energie: E = mc2

přeměna klidové hmotnosti (energie) na energii kinetickou → nejkompaktnější zdroj energie

Ekvivalent pohonu raketoplánu – ~ 100 mg antihmoty

Problém: Nemáme zdroje antihmoty → musíme ji vyrobit – potřebujeme mnoho energie

Nutná energie větší než klidová energie (hmotnost) páru částice a antičástice ( E = mc2 )

Urychlovače jako zdroje energie pro produkci antičástic

v současnosti se produkuje okolo 10 ng antiprotonů za rok

Účinnost výroby antiprotonů (nyní) – 105 protonů (Ep=120 GeV) na jeden antiproton → 1,2∙1016eV/antiproton → 1,16∙1021 J/g . Efektivita 10-8.

Page 25: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Produkce antiprotonu – animaci spustit kliknutím na ni

Skladování – magnetická a elektrická pole

Mezihvězdná loď AIMstar (studie provedená na Pensylvanské universitě)

Část zařízení LEAR pro produkci pomalých antiprotonů (protonový urychlovač v CERNu)

Současné metody umožňují – zlepšení o 3-4 řády

Současná produkce stačí jen na kombinovaný pohon

během letu je možno antihmotu uchovávat v magnetické prstenci (AIMstar potřebuje 28,5 μg)

Dnes jsme schopni udržet antiprotony v magnetické pasti i stovky dníVelké zkušenosti s produkcí pomalých antiprotonů v CERNu

Page 26: Jaderné zdroje pro vesmír aneb jak získat energii tam, kde Slunce nesvítí

Závěr

1) K intenzivnější činnosti člověka v blízkém i vzdálenějším vesmírném okolí jsou nutné velmi výkonné zdroje energie – zajištění přepravy, tepla a elektrické energie

2) Těmito zdroji musí být s největší pravděpodobností zdroje jaderné

3) Jsou tyto možnosti: Radioizotopové, štěpení, jaderná fůze a využití antihmoty

4) Zatím se využívají radioizitopové zdroje (menší výkony) a štěpné reaktory (větší výkony) Od roku 2003 nová etapa zájmů o tyto zdroje. Nutná „politická zakázka“ – mise, která by takové zdroje požadovala.

5) Takovou misí by mohla být A) trvalá měsíční základna B) cesta lidí na Mars C) komplexní sonda do vnějších částí Sluneční soustavy

6) Využití předchozích zkušeností z vesmíru i ze Země

7) Pro intenzivní osvojení meziplanetárního prostoru a mezihvězdné lety – nutnost osvojení jaderné fúze či využití antihmoty

8) Technicky jsou problémy řešitelné, jde o to, zda se lidstvo pro toto dobrodružství rozhodne

Zdeněk Rotrekl


Recommended