+ All Categories
Home > Documents > Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina...

Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina...

Date post: 25-Dec-2015
Category:
Upload: verity-crawford
View: 214 times
Download: 0 times
Share this document with a friend
25
Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení nanobiotechnologie Ústav nanobiologie a strukturní biologie CVGZ AVČR České Budějovice [email protected] www.nh.cas.cz/people/safarik
Transcript
Page 1: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Magneticky modifikované aktivní uhlí a biouhel a jejich

využití

Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová,

Mirka Šafaříková

Oddělení nanobiotechnologieÚstav nanobiologie a strukturní biologie CVGZ AVČR

České Budějovice

[email protected]

www.nh.cas.cz/people/safarik

Page 2: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Types of magnetic nano- and microparticles

Multi domain, single domain or superparamagnetic

• Magnetite (Fe3O4)

• Ferrites (MeO . Fe2O3; Me = Ni, Co, Mg, Zn, Mn ...)

• Maghemite (-Fe2O3)

• Greigite (Fe3S4)

• Iron, nickel

Page 3: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Why magnetic materials are so important in bioapplications?

They are smart materials!!!!

The following typical properties of magnetic materials form the basis of their applications in biosciences

and biotechnology

Page 4: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Important properties

• Selective separation (removal) of magnetic particles from the system

• Targeting (navigation) of magnetic particles to desired area using magnetic field

Page 6: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Important properties

• Increasing of contrast during MRI

• Peroxidase-like activity

Page 7: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Important properties

• Hardening of biological structures (chiton teeth)

• Navigation in magnetic field

Page 8: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Important properties

• Magnetic labeling of biologically active compounds

• Magnetization of biological diamagnetic materials

Page 9: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Examples of of magnetic nano- and microparticles applications

• From molecular biology to environmental technologies

• Manipulation of microliters as well as million of liters

• Manipulation in suspension systems

• Both separation and non-separation techniques are important

Page 10: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Preparation of magnetic particles for bioapplications

• Precipitation• High-temperature reactions• Reactions in steric environments• Sol-gel reactions• Decomposition of organometallic precursors• Polyol methods• Biosynthesis

Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008, 108(6):2064-2110.

Page 11: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Postmagnetization

• Chemical precipitation procedures

• High temperature treatment

• Ferrofluid treatment

• Microwave assisted procedures

• Mechanochemistry

• Encapsulation

Page 12: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Review paper

Page 13: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Conversion Of Activated Carbons (Charcoal) Into Their Magnetic Derivatives Using Chemical Precipitation Procedures

Modification Procedure

Precipitation of magnetite from FeSO4 and Fe2(SO4)3 by NaOH in the presence of charcoal, followed by

aging for 24 h and heating at 473 K

Precipitation of iron oxides from FeSO4 and FeCl3 by NaOH in the presence of charcoal, followed by

drying at 100 °C for 3 h

Precipitation of hydrated iron oxides from FeSO4 by NaOH in the presence of charcoal, followed by

heating to 100 °C for 1 h

Activated carbon was suspended in NaOH solution and heated to 100 °C; then a solution of Fe(NO3)3

and Co(NO3)2 was quickly poured into the AC suspension and refluxed at 100 °C for 2 h

Bamboo charcoal powder was suspended in Fe(NO3)3, Zn(NO3)2, Ni(NO3)2 and aqueous ammonia

solution and then heated in an autoclave at 180 °C for 2 h and air cooled to room temperature

Activated carbon was suspended in CuCl2 and FeCl3 solution, followed by NaOH solution addition and

heating to 98-100 °C for 2 h

FeCl3 and FeSO4 solution was mixed with NaOH solution to keep pH value of 9.5, then activated carbon

was added and the obtained material was dried in an oven at 100 °C for 3 h

Page 14: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Modification Procedure

Activated carbon was impregnated with an aqueous solution of sucrose and Ni(NO3)2, followed by heating at 600 °C

under N2 for 3 hours. Ni nanoparticles were formed within the porous AC matrix

A solution of Ni(NO3)2 was dropped into NaOH solution, then ethanol solution of phenolic resin was added followed

by solvent evaporation at 333 K and carbonization under argon atmosphere at 873 K

Impregnation of activated carbon with Fe(NO3)3 solution followed by drying at 90 °C and heated to 700 °C under

argon; then benzene vapor was introduced

Activated carbon from rice husk was modified with HNO3 for 3 h at 80 °C followed by suspending in Fe(NO3)3 and

drying. Thermal treatment was conducted at 750 °C for 3 h in the presence of N2 to enable formation of

magnetite nanoparticles

Dried chitosan microspheres were immersed in (NH4)3[Fe(C2O4)3] solution followed by washing and drying, then the

sample was carbonized under Ar atmosphere at 700-1000 °C for 4 h

Activated carbon was suspended in Fe(NO3)3 ; after drying it was heated to 800 °C in N2 atmosphere and after cooling

heated at 850 °C in CO2 atmosphere for 1.5 h

A mixture of the anthracite powder, coal tar, Ni(NO3)2 and water was mixed and extruded in the form of 1 cm cylinders. After drying the material was carbonized under a flow of N2 at 600 °C and then activated at 880 °C under a flow of N2

Activated carbon was impregnated with Fe(NO3)3 solution and then with ethylene glycol. The impregnated sample

was subjected to heat treatment under N2 atmosphere at a temperature 250-450 °C for 2 h

Activated carbon was filled with a Fe(NO3)3 solution in ethanol and then dried at 90 °C for 2 h. Then the sample was

impregnated with ethylene glycol followed by heat treatment under N2 atmosphere at a temperature 350 or 450

°C for 2 h

Conversion Of Activated Carbons (Charcoal) Into Their Magnetic Derivatives By High Temperature Treatment

Page 15: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Conversion Of Activated Carbons (Charcoal) Into Their Magnetic Derivatives By Encapsulation

Modification Procedure

Activated carbon was mixed with alginate solution and citrate stabilized ferrofluid and then the suspension was added dropwise into a CaCl2 solution

Cellulose was dissolved in a cooled NaOH/urea solution followed by the addition of maghemite nanoparticles and activated carbon; the suspension was added dropwise into a NaCl solution. The formed beads were cross-linked with epichlorohydrin

Charcoal and magnetisable ferric oxide were entrapped in a polyacrylamide gel followed by lyophilisation and micronisation

Charcoal and barium ferrite microparticles were mixed with bovine serum albumin solution followed by emulsification in n-butanol – castor oil – glutaraldehyde continuous phase

Charcoal and magnetisable ferric oxide were entrapped in a polyacrylamide gel followed by drying at 80 °C overnight and milling to obtain particles of less then 50 µm in diameter

Activated carbon was suspended in NaOH solution and heated to 100 °C; then a solution of Fe(NO3)3 and

Co(NO3)2 was quickly poured into the AC suspension and refluxed at 100 °C for 2 h. This material was added

to Na alginate solution followed by pouring dropwise into CaCl2 solution

Page 16: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Application Of Magnetic Activated Carbons (Charcoal) For The Separation Of

Organic Compounds Type of MAC Separated organic compound

Almond shells 2,4,6-Trinitrophenol from water; 97% desorption achieved by methanol and hot water

Orange peel Naphthalene and p-nitrotoluene

Commercial Methylene blue from river water; maximum adsorption capacity was 47.62 mg g-1

Hydro-thermal process Methyl orange from water; maximum adsorption capacity was 44.65 mg g-1

Coconut shell Humic substances

Bitumine Methylene blue; maximum adsorption capacity was 229.5 mg g-1

Commercial Adsorption of methylene blue by activated carbon/cobalt ferrite/alginate composite beads

Chezacarb B Water soluble organic dyes from aqueous solutions

Chezacarb B Crystal violet and safranin O; magnetic solid-phase extraction used for preconcentration

Palm shells Oil from palm oil mill effluent

Commercial (Norit) Imidacloprid from water

Phenolic resin Methylene orange from water; maximum adsorption capacity was 0.16 mg m-2

Coconut shell Methyl orange from water; regeneration by hydrogen peroxide performed

Rice husk Methylene blue from water, maximum adsorption capacity was 321 mg g-1

Commercial Malachite green from water; maximum adsorption capacity was 89.29 mg g -1

Page 17: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Application Of Magnetic Activated Carbons (Charcoal) For

The Separation Of Inorganic Compounds

Type of MAC Separated inorganic compound

Coconut shellMercury; maximum adsorption capacity was 38.3 mg g-1. Hg desorption can be performed by heating

Bituminous coal Mercury(II) from water

CommercialArsenic(V) removal from contaminated water with MAC coated with bacteria or biopolymers

Coconut or fruit pit Gold from cyanide leach liquor or cyanide pulp

Orange peel Phosphate from wastewater

Page 18: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Microwave assisted synthesis of magnetically responsive biochar

Biochar

Ferrous sulfate

Microwave oven

high pH

Magnetic properties are caused by the deposition of magnetic iron oxides nano- and microparticles on the biochar surface using the developed procedure

Magnetic biochar

Fe2+ + H2O → Fe(OH)2

3 Fe(OH)2 + ½ O2 Fe3O4 + 3 H2Omicrowave

Page 19: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Safarik,I., Horska,K., Pospiskova,K., Maderova,Z., Safarikova,M.: Microwave Assisted Synthesis of Magnetically Responsive Composite

Materials. IEEE Trans. Magn. 49 (1) (2013) 213-218

Page 20: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Magnetic derivative of biochar

Page 21: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Adsorption of acridine orange

Akridinová oranž 50mg mag.biochar

0

5

10

15

20

25

30

0 10 20 30 40 50 60

Ceq ( mg/l)

Qeq

(m

g/g

)

Page 22: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

Sirofloc

Page 23: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

COST Action (do 25. 3. 2016)

Page 24: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

MC

Page 25: Magneticky modifikované aktivní uhlí a biouhel a jejich využití Ivo Šafařík, Kateřina Horská, Kristýna Pospíšková, Zdenka Maděrová, Mirka Šafaříková Oddělení.

ありがとうございます !!!!!

[email protected]

www.nh.cas.cz/people/safarik


Recommended