+ All Categories
Home > Documents > Ppt Aero 6sem HT

Ppt Aero 6sem HT

Date post: 01-Jun-2018
Category:
Upload: bon-voyage
View: 224 times
Download: 0 times
Share this document with a friend

of 92

Transcript
  • 8/9/2019 Ppt Aero 6sem HT

    1/232

    Department of Aeronautical engineering

    School of Mechanical engineering

    Vel Tech Dr RR & SR Technical University

    Course Material

    U6AEA !" #eat Transfer

    1

  • 8/9/2019 Ppt Aero 6sem HT

    2/232

    U6AEA ! #EAT TRA$S%ER U$ T #eat Con'uction (

    Basic Modes of Heat Transfer – One dimensional steady state heat conduction: Composite Medium – Criticalthickness – Effect of variation of thermal Conductivity – Extended Surfaces – nsteady state! Heat Conduction:"umped System #nalysis – Heat Transfer in Semi infinite and infinite solids – se of Transient – Temperaturecharts – #pplication of numerical techni$ues!

    U$ T Convective #eat Transfer (

    %ntroduction – &ree convection in atmosphere free convection on a vertical flat plate – Empirical relation in freeconvection – &orced convection – "aminar and tur'ulent convective heat transfer analysis in flo(s 'et(een

    parallel plates) over a flat plate and in a circular pipe! Empirical relations) application of numerical techni$ues in pro'lem solvin*!

    U$ T Ra'iative #eat Transfer (

    %ntroduction to +hysical mechanism – ,adiation properties – ,adiation shape factors – Heat exchan*e 'et(eennon – 'lack 'odies – ,adiation shields!

    U$ T V #eat E)changers (

    Classification – Temperature -istri'ution – Overall heat transfer coefficient) Heat Exchan*e #nalysis – "MT-Method and E./T Method) pro'lems usin* "MT- and E./T methds!

    U$ T V #eat Transfer *ro+lems n Aerospace Engineering (

    Hi*h.Speed flo( Heat Transfer) Heat Transfer pro'lems in *as tur'ine com'ustion cham'ers – ,ocket thrustcham'ers – #erodynamic heatin* – #'lative heat transfer) Heat transfer pro'lems in no00les!

    TE,T -../S

    1! 2unus #! Cen*el!) 3Heat Transfer – # practical approach4) Second Edition) Tata Mc5ra(.Hill) 6776!

    6! %ncropera! &!+!and -e(itt!-!+! 3%ntroduction to Heat Transfer4) 8ohn 9iley and Sons – 6776!

    RE%ERE$CE -../S

    1! "ienhard) 8!H!) 3# Heat Transfer Text Book4) +rentice Hall %nc!) 1 ;1!

    6! Holman) 8!+! 3Heat Transfer4) Mc5ra(.Hill Book Co!) %nc!) /e( 2ork) < th Edn!) 1 1!

    =! Sachdeva) S!C!) 3&undamentals of En*ineerin* Heat > Mass Transfer4) 9iley Eastern "td!) /e( -elhi)1 ;1!

    ?!Mathur) M! and Sharma) ,!+! 35as Tur'ine and 8et and ,ocket +ropulsion4) Standard +u'lishers) /e(-elhi 1 ;;!

    U$ T 0

    Basic Modes of Heat Transfer

    2

  • 8/9/2019 Ppt Aero 6sem HT

    3/232

    One dimensional steady state heat conduction:

    Composite MediumCritical thickness

    Effect of variation of thermal Conductivity

    Extended Surfaces

    nsteady state! Heat Conduction: "umped System #nalysis

    Heat Transfer in Semi infinite and infinite solids

    se of Transient Temperature charts

    #pplication of numerical techni$ues!

    C.$DUCT .$

    *ART 0 A

    3

  • 8/9/2019 Ppt Aero 6sem HT

    4/232

    12 Define #eat Transfer2

    Heat transfer can 'e defined as the transmission of ener*y from one re*ion to another re*ion due to temperature difference!

    2 3hat are the mo'es of #eat Transfer4

    ConductionConvection,adiation

    !2 Define Con'uction2

    Heat conduction is a mechanism of heat transfer from a re*ion of hi*h temperature toa re*ion of lo( temperature (ithin a medium @solid) li$uid or *asesA or 'et(een differentmedium in direct physical contact!

    %n condition ener*y exchan*e takes place 'y the kinematic motion or direct impact of molecules! +ure conduction is found only in solids!

    52 Define Convection2

    Convection is a process of heat transfer that (ill occur 'et(een a solid surface and afluid medium (hen they are at different temperatures!

    Convection is possi'le only in the presence of fluid medium!

    2 Define Ra'iation2

    The heat transfer from one 'ody to another (ithout any transmittin* medium iskno(n as radiation! %t is an electroma*netic (ave phenomenon!62 State %ourier7s 8a9 of con'uction2

    The rate of heat conduction is proportional to the area measured – normal to thedirection of heat flo( and to the temperature *radient in that direction!

    α . # dT dx

    dT . C#

    dxQ =

    (here # – are in m 6

    dT dx

    . Temperature *radient in Dm

    – Thermal conductivity 9Dm !

    :2 Define Thermal Con'uctivity2

    4

  • 8/9/2019 Ppt Aero 6sem HT

    5/232

    Thermal conductivity is defined as the a'ility of a su'stance to conduct heat!

    ;2 3rite 'o9n the e

  • 8/9/2019 Ppt Aero 6sem HT

    6/232

    1 2 3rite 'o9n the e stea'y state con'uction e t9o 'imensional con'uction e

  • 8/9/2019 Ppt Aero 6sem HT

    7/232

    1;2 3rite 'o9n the general e

  • 8/9/2019 Ppt Aero 6sem HT

    8/232

    %f the temperature of a 'ody does not vary (ith time) it is said to 'e in a steady stateand that type of conduction is kno(n as steady state heat conduction!

    2 3hat is meant +y Transient heat con'uction or unstea'y state con'uction4

    %f the temperature of a 'ody varies (ith time) it is said to 'e in a transient state andthat type of conduction is kno(n as transient heat conduction or unsteady state conduction!

    62 3hat is *erio'ic heat flo94

    %n periodic heat flo() the temperature varies on a re*ular 'asis!

    Example:

    1! Cylinder of an %C en*ine!6! Surface of earth durin* a period of 6? hours!

    :2 3hat is non perio'ic heat flo94

    %n non periodic heat flo() the temperature at any point (ithin the system varies nonlinearly (ith time!

    Examples :

    1! Heatin* of an in*ot in a furnace!6! Coolin* of 'ars!

    ;2 3hat is meant +y $e9tonian heating or cooling process4

    The process in (hich the internal resistance is assumed as ne*li*i'le in comparison(ith its surface resistance is kno(n as /e(tonian heatin* or coolin* process!

    (2 3hat is meant +y 8umpe' heat analysis4

    %n a /e(tonian heatin* or coolin* process the temperature throu*hout the solid isconsidered to 'e uniform at a *iven time! Such an analysis is called "umped heat capacityanalysis!

    !=2 3hat is meant +y Semi"infinite soli's4

    %n a semi infinite solid) at any instant of time) there is al(ays a point (here the effectof heatin* or coolin* at one of its 'oundaries is not felt at all! #t this point the temperatureremains unchan*ed! %n semi infinite solids) the 'iot num'er value is ∞!

    !12 3hat is meant +y infinite soli'4

    # solid (hich extends itself infinitely in all directions of space is kno(n as infinite solid!

    8

  • 8/9/2019 Ppt Aero 6sem HT

    9/232

    %n semi infinite solids) the 'iot num'er value is in 'et(een 7!1 and 177!7!1 B i 177!

    ! 2 Define -iot num+er2

    %t is defined as the ratio of internal conductive resistance to the surface convectiveresistance!

    B i Internal conductive resistanceSurface convective resistance

    B i LhL K

    !

    !!2 3hat is the significance of -iot num+er4

    Biot num'er is used to find "umped heat analysis) semi infinite solids and infinite solids

    %f Bi 7!1 " → "umped heat analysisB i ∞ → Semi infinite solids7!1 B i 177 → %nfinite solids!

    !52 E)plain the significance of %ourier num+er2

    %t is defined as the ratio of characteristic 'ody dimension to temperature (ave penetration depth in time!

    &ourier /um'er Characteristic body dimension

    Temperature wave penetrationdepth in time

    %t si*nifies the de*ree of penetration of heatin* or coolin* effect of a solid!

    ! 2 3hat are the factors affecting the thermal con'uctivity4

    1! Moisture6! -ensity of material=! +ressure

    ?! TemperatureI! Structure of material

    !62 E)plain the significance of thermal 'iffusivity2

    The physical si*nificance of thermal diffusivity is that it tells us ho( fast heat is propa*ated or it diffuses throu*h a material durin* chan*es of temperature (ith time!

    !:2 3hat are #eisler charts4

    %n Heisler chart) the solutions for temperature distri'utions and heat flo(s in plane(alls) lon* cylinders and spheres (ith finite internal and surface resistance are presented!

    9

  • 8/9/2019 Ppt Aero 6sem HT

    10/232

    Heisler charts are nothin* 'ut a analytical solutions in the form of *raphs!*ART 0 -

    12 A 9all of =26m thic ness having thermal con'uctivity of 12 9BM 2 The 9all is to +einsulate' 9ith a material having an average thermal con'uctivity of =2! 3Bm/2 nneran' outer surface temperatures are 1=== ° C an' 1= °C2 #eat transfer rate is 15== 3Bmcalculate the thic ness of insulation2

    iven Data

    Thickness of (all " 1 7!< mThermal conductivity of (all 1 1!6 9Dm !Thermal conductivity of insulation 6 7!= 9Dm ! %nner surface TemperatureT1 1777 °C J 6K= 16K= Outer surface TemperatureT= 17 °C J 6K= 6;= Heat transfer per unit area D# 1?77 9Dm 6!

    Solution

    "et the thickness of insulation 'e " 69e kno(

    overall T Q R∆= L&rom e$uation @1=A @orA LHMT -ata 'ook pa*e /o! =?9here

    ∆T T a – T ' @orA T1 – T ==1 6

    1 6 =

    1 1

    a b

    L L L R

    h A K A K A K A h A= + + + +

    1 =

    =1 6

    1 6 =

    L M1 1

    a b

    T T Q

    L L Lh A K A K A K A h A

    −=+ + + +

    Heat transfer coefficient h a) h ' and thickness " = are not *iven! So ne*lect that terms!

    [ ]1 =1 6

    1 6

    T

    T L L

    K A K A

    −⇒

    +

    [ ]1 =1 6

    1 6

    6

    6

    T

    #

    16K= 6;=1?77

    7!<1!6 7!=

    7!7

  • 8/9/2019 Ppt Aero 6sem HT

    11/232

    2 The 9all of a col' room is compose' of three layer2 The outer layer is +ric !=cmthic 2 The mi''le layer is cor = cm thic > the insi'e layer is cement 1 cm thic 2 The

    temperatures of the outsi'e air is °C an' on the insi'e air is " = °C2 The film co"efficient for outsi'e air an' +ric is 25 3Bm /2 %ilm co"efficient for insi'e air an'cement is 1: 3Bm /2 %in' heat flo9 rate2

    Ta e/ for +ric 2 3Bm/ / for cor =2= 3Bm/ / for cement =2 ; 3Bm/

    iven Data

    Thickness of 'rick " = =7 cm 7!= mThickness of cork " 6 67 cm 7!6 mThickness of cement " 1 1I cm 7!1I m%nside air temperature T a .67 °C J 6K= 6I= Outside air temperature T ' 6I °C J 6K= 6 ; &ilm co.efficient for inner side h a 1K 9Dm 6 &ilm co.efficient for outside h ' II!? 9Dm 6

    'rick = 6!I 9Dm cork 6 7!7I 9Dm ! cement 1 7!7; 9Dm !

    Solution

    Heat flo( throu*h composite (all is *iven 'y

    overall T Q R

    ∆= L&rom e$uation @1=A @orA LHMT -ata 'ook pa*e /o! =?

    9here∆T T a – T '

    =1 6

    1 6 =

    1 1

    a b

    L L L R

    h A K A K A K A h A= + + + +

    11

  • 8/9/2019 Ppt Aero 6sem HT

    12/232

    [ ]

    =1 6

    1 6 =

    =1 6

    1 6 =

    6

    L M1 1

    D1 1

    6I= 6:;D

    1 7!1I 7!6 7!= 11K 7!6; 7!7I 6!I II!?

    D :!I D

    a b

    a b

    a b

    a b

    T T Q

    L L Lh A K A K A K A h A

    T T Q A

    L L Lh K K K h

    Q A

    Q A W m

    −⇒ =

    + + + +

    −⇒ =

    + + + +

    −⇒ =

    + + + +

    = −

    The ne*ative si*n indicates that the heat flo(s from the outside into the cold room!

    !2 A 9all is constructe' of several layers2 The first layer consists of masonry +ric =cm2 thic of thermal con'uctivity =266 3Bm/> the secon' layer consists of ! cm thic mortar of thermal con'uctivity =26 3Bm/> the thir' layer consists of ; cm thic limestone of thermal con'uctivity =2 ; 3Bm/ an' the outer layer consists of 12 cm thic plaster of thermal con'uctivity =26 3Bm/2 The heat transfer coefficient on the interioran' e)terior of the 9all are 26 3Bm / an' 11 3Bm / respectively2 nterior roomtemperature is °C an' outsi'e air temperature is " °C2

    Calculate

    a@ .verall heat transfer coefficient+@ .verall thermal resistancec@ The rate of heat transfer'@ The temperature at the Function +et9een the mortar an' the limestone2

    iven Data

    Thickness of masonry " 1 67cm 7!67 mThermal conductivity 1 7!

  • 8/9/2019 Ppt Aero 6sem HT

    13/232

    overall T Q

    R

    ∆= L&rom e$uation @1=A @orA LHMT -ata 'ook pa*e /o! =?

    9here∆T T a – T '

    =1 6 ?

    1 6 = ?

    =1 6 ?

    1 6 = ?

    1 1

    1 1

    6:I 6

  • 8/9/2019 Ppt Aero 6sem HT

    14/232

    1 6 = = ? ? I I1 6

    1 6 = ?

    1

    1a

    1

    1

    1

    1 6

    1

    6:I.T 1 E ,

    1D

    6:ID

    1D

    6:I=?!I<

    1DI!<

    6;;!;

    a b

    a b

    a

    a

    a a

    a

    T T T T T T T T T T T T Q

    R R R R R R

    T T Q R

    h A h A

    T Q A

    h

    T

    T K

    T T Q

    R

    − − − − −−⇒ = = = = = =

    −⇒ = =

    −⇒ =

    −⇒ =

    ⇒ =−

    ⇒ =

    Q

    6 1

    11 1

    1

    6;;!; ,

    T LQ

    L k A K A

    −= =

    Q

    6

    1

    1

    6

    6

    6 =

    6

    = 66

    6 6

    6

    =

    6

    6

    =

    =

    6;;!;D

    6;;!;=?!I<

    7!677!T Q A

    L K

    T

    T

    T Q

    R

    T LQ

    L K A K A

    T Q A

    L K

    T

    T

    −⇒ =

    −⇒ =

    ⇒ =−

    −= =

    −⇒ =

    −⇒ =

    ⇒ =

    Q

    Temperature 'et(een Mortar and limestone @T = is 6K

    14

  • 8/9/2019 Ppt Aero 6sem HT

    15/232

    52 A steam to li

  • 8/9/2019 Ppt Aero 6sem HT

    16/232

    =

    ?71!I; 17

    Q

    W

    −−

    ⇒ = ×

    ×Heat transfer Q = ' 2#"2 )+L.ve si*n indicates that the heat flo(s from) outside to inside(e kno(Heat transfer # @T a – T ' A L&rom e$uation /o! @1?A

    a

    =

    6

    E#@T A

    6I!6 17

    6I!6 @ ?7A

    bT

    K

    ⇒ −− ×= × −

    &verall heat transfer co' efficient ( = 2# %/m

    Temperature drop @T = – T ?A across the scale is *iven 'y[ ]= ?

    =

    TE T

    6I!6 177!771I

    =K!;

    s ale

    T Q T

    R

    T

    T !

    ∆= ∆ −

    ∆× =

    ⇒ ∆ = °

    2 A surface 9all is ma'e up of ! layers one of fire +ric > one of insulating +ric an' oneof re' +ric 2 The inner an' outer surface temperatures are (== °C an' != °Crespectively2 The respective co"efficient of thermal con'uctivity of the layers are 12 >=215 an' =2( 3Bm/ an' the thic ness of =cm> ; cm an' 11 cm2 Assuming close +on'ingof the layers at the interfaces2 %in' the heat loss per s

  • 8/9/2019 Ppt Aero 6sem HT

    17/232

    =1 6

    1 6 =

    1 ?

    =1 6

    1 6 =

    1 1

    T E1 1

    a b

    a b

    L L L R

    h A K A K A K A h A

    T L L L

    h A K A K A K A h A

    = + + + +

    −⇒+ + + +

    LConvective heat transfer co.efficient h a) h ' are not *iven!So ne*lect that terms

    1 ?

    =1 6

    1 6 =

    1 ?

    =1 6

    1 6 =

    6

    T E

    TD

    11K= =7=

    7!6 7!7; 7!111!6 7!1? 7!:

    D 1711!6I?< D

    T L L L

    K A K A K A

    T Q A

    L L L K K K

    Q A W m

    −⇒

    + +

    −=+ +

    −=+ +

    =

    ?ii@ nterface temperatures ?T an' T ! @

    9e kno( that) interface temperatures relation6 = = ?1 ? 1 6

    1 6 =

    1 6

    1

    11

    1

    1 6

    1

    1

    !!!!!!@ A

    @ A

    ,

    T T T T T T T T Q A

    R R R R

    T T A Q R

    L K A

    T T Q

    L K A

    − −− −⇒ = = = =

    −⇒ =

    =

    −⇒ =

    where

    1 6

    1

    1

    6

    6

    6 =

    6

    T D# E

    11K=1711!6I?< 7!6

    1!6

    177?!?IK

    T L K

    T

    T K

    T T Q

    R

    −=

    =

    −=

    Similarly,

    (here

    17

  • 8/9/2019 Ppt Aero 6sem HT

    18/232

    66

    6

    6 =

    6

    6

    6 =

    6

    6

    =

    =

    ,

    T D# E

    177?!?IK1711!6I?<

    7!7;7!1?

    ?6

    L K A

    T T Q L K A

    T L K

    T

    T K

    =

    −⇒ =

    −⇒

    −=

    =

    62 A furnace 9all ma'e up of :2 cm of fire plate an' =26 cm of mil' steel plate2 nsi'esurface e)pose' to hot gas at 6 = °C an' outsi'e air temperature : °C2 The convectiveheat transfer co"efficient for inner si'e is 6= 3Bm /2 The convective heat transfer co"efficient for outer si'e is ;3Bm /2 Calculate the heat lost per s

  • 8/9/2019 Ppt Aero 6sem HT

    19/232

    =1 6

    1 6 =

    a

    =1 6

    1 6 =

    1 1

    T E1 1

    a b

    b

    a b

    L L L R

    h A K A K A K A h A

    T L L L

    h A K A K A K A h A

    = + + + +

    −⇒+ + + +

    LThe term " = is not *iven so ne*lect that term

    a

    =1 6

    1 6 =

    a

    1 6

    1 6

    6

    T E

    1 1

    T E 1 1

    :6= =77D

    1 7!7KI 7!77

  • 8/9/2019 Ppt Aero 6sem HT

    20/232

    :2 A mil' steel tan of 9all thic ness 1=mm contains 9ater at (= °C2 Calculate the rate of heat loss per m of tan surface area 9hen the atmospheric temperature is 1 °C2 The

    thermal con'uctivity of mil' steel is = 3Bm/ an' the heat transfer co"efficient forinsi'e an' outsi'e the tan is ;== an' 11 3Bm / respectively2 Calculate also thetemperature of the outsi'e surface of the tan 2

    iven Data

    Thickness of (all " 1 17mm 7!71 m%nside temperature of (ater T a 7° J 6K= =

  • 8/9/2019 Ppt Aero 6sem HT

    21/232

    1 61 6

    1

    1 a

    1

    !!!!!!@ A

    1@ A ,

    =

  • 8/9/2019 Ppt Aero 6sem HT

    22/232

    = 7!K< 9Dm Ta 6

  • 8/9/2019 Ppt Aero 6sem HT

    23/232

    6 66

    6 6

    66a

    6 6

    6

    !!!!!@6A

    7!1, 16!I 7!I

    7!71< CD9

    a b

    a b

    a a

    a

    R R R

    R R

    L K A

    R

    ×=+

    = =× ×=

    66'

    6 6

    6

    7!1,

    1;!I 7!I

    7!717; CD9

    b b

    b

    L K A

    R

    = =× ×

    =

    6

    6

    7!71< 7!717;@6A

    7!71< 7!717;

    7!77

  • 8/9/2019 Ppt Aero 6sem HT

    24/232

    1 6

    1

    6

    6

    6 =

    6

    =

    =

    @BA

    6:7!IK 16K!

  • 8/9/2019 Ppt Aero 6sem HT

    25/232

    6

    1 6

    6

    # E 1m7!1 7!7?7!K 7!?;

    66!

  • 8/9/2019 Ppt Aero 6sem HT

    26/232

    T Q

    R∆=

    9here∆T T 1 – T ?

    =1 6

    1 6 =

    1 ?

    =1 6

    1 6 =

    1 1

    T E

    1 1

    a b

    a b

    L L L R

    h A K A K A K A h A

    T L L L

    h A K A K A K A h A

    = + + + +

    −⇒

    + + + +

    /e*lectin* unkno(n terms @h a and h ' A

    1 ?

    =1 6

    1 6 =

    6

    6

    T E

    :6= ?6= # E 1m

    7!76 7!1I7 7!61

    I77 E

    7!17;<

    ?

  • 8/9/2019 Ppt Aero 6sem HT

    27/232

    112 A thic 9alle' tu+e of stainless steel J/ ::2; KBhr m °CL mm D an' = mm.D is covere' 9ith a mm layer of as+estos J/ =2;; KBhr m °CL2 f the insi'e 9all

    temperature of the pipe is maintaine' at = °C an' the outsi'e of the insulator at 5 °C2Calculate the heat loss per meter length of the pipe2

    iven Data

    %nner diameter of steel d 1 6I mm%nner radius r 1 16!I mm ⇒ 7!716I mOuter diameter - 6 I7 mmOuter radius r 6 6I mm ⇒ 7!76I m,adius r = r 6 J 6I mm I7 mm ⇒ 7!7I m

    Thermal conductivity of stainless steel 1 KK!;I k8Dhr m°C KK!;I=

  • 8/9/2019 Ppt Aero 6sem HT

    28/232

    a

    =6

    1 6

    1 6

    a

    =6

    1 6

    1 6

    T E

    16

    T D" E

    16

    b

    b

    T Q

    r r In In

    r r L K K

    T

    r r In In

    r r K K

    π

    π

    −⇒

    +

    −⇒

    +

    II7 . ?ID E

    7!76I 7!7I

    1 7!716I 7!76I6 61!

  • 8/9/2019 Ppt Aero 6sem HT

    29/232

    9here∆T T a – T '

    =6 ?

    a 1 1 1 6 6 = = ?

    a

    =6 ?

    a 1 1 1 6 6 = = ?

    1 1 1 1 1 1

    6 h

    T E

    1 1 1 1 1 1

    6 h

    b

    b

    b

    r r r R In In In

    L r K r K r K r h r

    T Q

    r r r In In In

    L r K r K r K r h r

    π

    π

    = + + + + −

    ⇒ + + + +

    LThe terms = and r ? are not *iven) so ne*lect that terms

    a

    =6

    a 1 1 1 6 6 =

    T E

    1 1 1 1 1

    6 h

    I;: . =7= E

    1 1 1 7!7=;1 1 7!7

  • 8/9/2019 Ppt Aero 6sem HT

    30/232

    Heat loss throu*h hollo( sphere is *iven 'yoverall T

    Q R∆

    = L&rom e$uation /o!@1 A or HMTdata 'ook +a*e /o!=? > =I

    9here∆T T a – T '

    6 61 1 6 6 6 =a 1 =

    a

    6 61 1 6 6 6 =a 1 =

    1 1 1 1 1 1 1 1 1

    ? h

    T E

    1 1 1 1 1 1 1 1 1

    ? h

    b

    b

    b

    R K r r K r r r h r

    T Q

    K r r K r r r h r

    π

    π

    = + − + − + −

    ⇒ + − + − +

    ha) h ' not *iven so ne*lect that terms!

    1 1 6 6 6 =

    1 1 1 1 1 1 1?

    KK= .=6=

    1 1 1 1 1 1 1?

  • 8/9/2019 Ppt Aero 6sem HT

    31/232

    = ?6

    =1 6

    a 1 1 6 = ?

    1 1 1

    6 h b

    r r r In In In

    r r r R

    L r K K K h r π

    = + + +

    1 ?

    = ?6

    =1 6

    a 1 1 6 = ?

    1 ?

    T E

    1 1 16 h

    T E

    16

    b

    T Q

    r r r In In In

    r r r

    L r K K K h r

    T r

    In

    L

    π

    π

    −⇒

    + + + +

    −⇒

    Heat transfer coefficients h ,h are not .iven"a b So ne.lect that terms"

    = ?6

    =1 6

    1 6 =

    r r In In

    r r r

    K K K

    + +

    I6= . 6:= E

    7!7?II 7!1=II 7!1KII1 7!7?7 7!7?II 7!1=II

    6 ?K 7!I 7!6I

    D ??;!; 9Dm

    Q In In In

    L

    Q L

    π

    ⇒ + +

    ⇒ =

    Heat transfer D" ??;!; 9Dm!

    152 A hollo9 sphere has insi'e surface temperature of !== °C an' then outsi'e surfacetemperature of != °C2 f / 1; 3Bm/2 Calculate ?i@ heat lost +y con'uction for insi'e'iameter of cm an' outsi'e 'iameter of 1 cm ?ii@ heat lost +y con'uction> if e

  • 8/9/2019 Ppt Aero 6sem HT

    32/232

    Solution

    ?i@ #eat lost ?G@

    Heat flo( overall T

    Q R

    ∆= L&rom HMT data 'ook +a*e

    /o!=? > =I9here

    ∆T T a – T ' @orA T1 – T 6

    6 61 1 6a 1 6

    1 6

    6 61 1 6a 1 6

    1 1 1 1 1 1

    ? h

    T E

    1 1 1 1 1 1 ? h

    b

    b

    R K r r r h r

    T Q

    K r r r h r

    π

    π

    = + − + −

    + − + LThe terms h a) h ' not *iven so ne*lect that terms !

    1 6

    1 1 6

    1 1 1 1?

    IK= .=7= E

    1 1 1 1? 1; 7!76I 7!7KI

    E 66:7!66 9

    T T Q

    K r r π

    π

    −⇒ =

    ⇒ −

    ?ii@ #eat loss ? f the area is e

  • 8/9/2019 Ppt Aero 6sem HT

    33/232

    ( )

    1 61

    1 61

    6 61 1 6

    1

    6 6

    1

    " ,E

    C#

    6

    IK= . =7=

    7!7I1; 6 @7!76I 7!7KI A

    =;1K!7=

    T T Q

    L KA

    T T Q

    L

    K r r

    Q

    Q W

    π

    π

    − =

    −=

    +

    =

    × +=

    Q for plain wall

    Derive an e)pression of Critical Ra'ius of nsulation %or A Cylin'er2

    Consider a cylinder havin* thermal conductivity ! "et r 1 and r 7 inner and outer radiiof insulation!

    Heat transfer 71

    r

    6

    iT T Q

    Inr

    KLπ

    ∞−=

    L&rom e$uation /o!@=A

    Considerin* h 'e the outside heat transfer co.efficient!

    π π

    π π

    −∴ +

    =−

    ⇒ = +

    i

    +

    )

    +

    + +

    i

    +

    )

    +

    T TQ =r

    Inr )

    2 5- A h

    Here A 2 r -

    T TQ

    r In

    r )

    2 5- 2 r -h

    To find the critical radius of insulation) differentiate (ith respect to r 7 and e$uate itto 0ero!

    33

  • 8/9/2019 Ppt Aero 6sem HT

    34/232

    i 2+ +

    + +

    ) +

    i

    2+ +

    + c

    ) )+ T T 3

    2 5-r 2 h-r dQdr r ) )

    In2 5- r 2 h-r

    since T T 3 +

    ) ) +

    2 5-r 2 h-r

    5 r r

    h

    π π

    π π

    π π

    − − − ⇒ = +

    − ≠

    ⇒ − =

    ⇒ = =

    1 2 A 9ire of 6 mm 'iameter 9ith mm thic insulation ?/ =211 3Bm/@2 f theconvective heat transfer co"efficient +et9een the insulating surface an' air is 3Bm 8>fin' the critical thic ness of insulation2 An' also fin' the percentage of change in theheat transfer rate if the critical ra'ius is use'2

    iven Data

    d1 < mmr 1 = mm 7!77= mr 6 r 1 J 6 = J 6 I mm 7!77I m

    7!11 9Dm h ' 6I 9Dm 6

    Solution

    1! Critical radius c5

    r h

    = L&rom e$uation /o!@61A

    c

    c

    +"))r !"! )+ m

    2#

    r !"! )+ m

    = = ×

    = ×

    Critical thickness r c – r 1

    !"! )+ +"++)"! )+ m

    −−

    = × −= ×

    'cCritical thic4ness t = )"! )+ or3 )"! mm×

    6! Heat transfer throu*h an insulated (ire is *iven 'y

    a b)

    2

    )

    ) b 2

    T TQ

    r In

    r ) )2 - 5 h r π

    −= +

    34

  • 8/9/2019 Ppt Aero 6sem HT

    35/232

    [ ]a b

    a b

    6rom H7T data boo4 8a.e 9o" #

    2 - T T 3 =+"++#

    In)+"++

    +")) 2# +"++#

    2 - T T 3Q) =

    )2"$!

    π

    π

    − + ×

    Heat flo( throu*h an insulated (ire (hen critical radius is used is *iven 'y

    [ ]a b2 2 cc

    )

    ) b c

    T TQ r r

    r In

    r ) )2 - 5 h r π

    −= → +

    a b

    a b2

    2 - T T 3 =

    !"! )+In +"++ )

    +")) 2# !"! )+2 - T T 3

    Q =)2"#:2

    π

    π

    − × + × ×

    ∴ +ercenta*e of increase in heat flo( 'y usin*

    Critical radius 2 ))

    Q Q)++

    Q− ×

    ) ) )++)2"#: )2"$!

    ))2"$!

    +"##;

    − ×=

    =

    nternal #eat eneration 0 %ormulae use'%or plane 9all

    12 Surface temperature w

  • 8/9/2019 Ppt Aero 6sem HT

    36/232

    (hereT∞ . &luid temperature)

    $ . Heat *eneration) 9Dm=

    " – Thickness) mh . Heat transfer co.efficient) 9Dm 6

    – Thermal conductivity) 9Dm !%or Cylin'er

    12 #eat generationQ

    <>

    =

    2 Ma)imum temperature2

    ma w

  • 8/9/2019 Ppt Aero 6sem HT

    37/232

    ( )'$ 2

    2

    1esistivity -en.th1esistance of wire 1 =

    Area

    :+ )+ )+ ) =)+!

    1 +"+@@

    π −

    ×

    × × ××

    = Ω

    9e kno( that %6,

    @677A6 × @7!7 AQ = @$+ %

    Heat *enerated 2Q @$+

    < > d -!π = = ×

    ( )2

    $

    @$+<

    )+ )!

    < #$+ )+ % / m

    π −=

    × ×

    = ×

    Su'stitutin* $ value in E$uation @#A

    2

    ma c

    c

    #$+ )+$ )"# )+ 3T T *

    ! )@ T @@"# 5

    −× × ×= = +×

    =

    1:2 A sphere of 1== mm 'iameter> having thermal con'uctivity of =21; 3Bm/2 The outersurface temperature is ; °C an' = 3Bm of energy is release' 'ue to heat source2Calculate12 #eat generate'

    2 Temperature at the centre of the sphere2

    iven

    -iameter of sphere d 177 mmr I7 mm 7!7I7 m

    Thermal conductivity 7!1; 9Dm Surface temperature T ( ; °C J 6K= 6;1 Ener*y released 6I7 9Dm 6

    Solution

    Heat *eneratedQ

    <>

    =

    37

  • 8/9/2019 Ppt Aero 6sem HT

    38/232

    π

    π π

    π π

    ⇒ =

    ⇒ =

    ⇒ =

    ⇒ =

    × × ×⇒ = ×

    2

    2

    2

    2

    Q / A< / A Here Q/A = 2#+ %/m

    >

    Q / A< / A Here Q/A = 2#+ %/m>

    2#+< / A

    ! / r

    < 2#+! r ! / r

    2#+ ! +"+#+3<

    ! / +"#+3

    < = )#,+++ %/m

    Temperature at the centre of the sphere2

    c w

    2

    c

    thetemperature of the ro' is measure' at t9o points = cm apart are foun' to +e 1 = °Can' 1== °C2 The convective heat transfer co"efficient +et9een the ro' an' thesurroun'ing air is != 3Bm /2 Calculate the thermal con'uctivity of the ro' material2

    iven Data

    #tmospheric Temperature T ∞ 6I °C J 6K= 6 ; -istance x 67 cm 7!67 mBase temperature T ' 1I7 °C J 6K= ?6= %ntermediate temperature T 177 °C J 6K= =K= Heat transfer co.efficient h =7 9Dm 6 !

    Solution

    Since the rod is lon*) it is treated as lon* fin! So) temperature distri'ution

    b

    T Te

    T T−∞

    − =−mx

    L&rom HMT data 'ook @C+ A

    +a*e /o!?1

    38

  • 8/9/2019 Ppt Aero 6sem HT

    39/232

    m +"2+3

    'm +"2+3

    ')

    : ' 2@* e

    !2 ' 2@*

    +"$ = e In +"$3= 'm +"2+3 ' +"#) = 'm +"2+3

    m = 2"## m

    − ×

    ×

    ⇒ =

    ⇒⇒ ×⇒ ×

    9e kno( that)

    06rom H7T data boo4

    C853 8a.e 9o"!)

    h82"## = """"""""""""" A3

    5A

    hP m

    KA=

    h – heat transfer co.efficient =7 9Dm 6 + – +erimeter πd π × 7!7I7

    +")#:P m=2 A Area d

    !π − =

    2 = +"+#+3!π

    2 A )"@$ )+ m−= ×

    '

    + +")#:A3 2"##

    5 )"@$ )++ +")#:

    $"#+ =5 )"@$ )+

    5 = $@": %/m5

    −×

    ⇒ = × ××

    ⇒ × ×

    1(2 An aluminium alloy fin of : mm thic an' = mm long protru'es from a 9all> 9hichis maintaine' at 1 = °C2 The am+ient air temperature is °C2 The heat transfercoefficient an' con'uctivity of the fin material are 15= 3Bm / an' 3Bm/ respectively2 Determine

    12 Temperature at the en' of the fin22 Temperature at the mi''le of the fin2

    !2 Total heat 'issipate' +y the fin2

    iven

    Thickness t Kmm 7!77K m"en*th " I7 mm 7!7I7 m

    39

  • 8/9/2019 Ppt Aero 6sem HT

    40/232

    Base temperature T ' 167 °C J 6K= = = #m'ient temperature T ∞ 66 ° J 6K= 6 I Heat transfer co.efficient h 1?7 9Dm

    6

    Thermal conductivity II 9Dm !

    Solution

    "en*th of the fin is I7 mm! So) this is short fin type pro'lem! #ssume end isinsulated!

    9e kno(Temperature distri'ution LShort fin) end insulated

    b

    T T cos h m 0- '""""""" A3

    T T cos h m-3

    − =−

    L&rom HMT data 'ook +a*e /o!?1

    ?i@ Temperature at the en' of the fin> *ut ) 8

    b

    b

    T ' T cos h m 0-'-A3

    T T cos h m-3

    T ' T ) """ )3

    T T cos h m-3

    where

    h8 m =

    5A 8 = 8erimeter = 2 - Appro 3 = 2 +"+#+

    8 = +") m

    ⇒ =−

    ⇒ =−

    ××

    # – #rea "en*th × thickness 7!7I7 × 7!77K ! 2 A "# )+ m−= ×

    h8 m =

    5A⇒

    !)!+ +")

    ## "# )+

    m 2$"@$

    −×= × ×

    =

    40

  • 8/9/2019 Ppt Aero 6sem HT

    41/232

    b

    b

    -

    T ' T ))3

    T T cos h 2$"@ +"+#+3

    T ' T ) T T 2"+#

    T ' 2@# )

    @ ' 2@# 2"+# T ' 2@# = !:"*

    T = !2"* 5

    Temperature at the end of the fin T !2"* 5

    =

    ⇒ =− ×

    ⇒ =−

    ⇒ =

    =

    ?ii@ Temperature of the mi''le of the fin>

    +ut x "D6 in E$uation @#A

    [ ]

    b

    b

    T ' T cos hm 0-'-/2A3

    T T cos h m-3

    +"+#+cos h 2$"@ +"+#+ '

    T ' T 2 T T cos h 2$"@ +"+#+3

    T' 2@# )"2 !

    @ ' 2@# 2"+!@T ' 2@#

    +"$+2#@ '2@#

    T #!"+! 5

    ⇒ =−

    ⇒ =− ×

    ⇒ =

    ⇒ ==

    Temperature at the middle of the fin

    - / 2T #!"+! 5= =

    ?iii@ Total heat 'issipate'

    L&rom HMT data 'ook +a*e /o!?1

    )/2b

    '! )/ 2

    Q = h85A3 T T 3 tan h m-3

    0)!+ +") ## "# )+ @ 2@#3 tan h 2$"@ +"+#+3

    Q = !!"! %

    ∞⇒ −⇒ × × × × × −

    × ×

    =2 Ten thin +rass fins ?/ 1== 3Bm/@> =2: mm thic are place' a)ially on a 1 m longan' 6= mm 'iameter engine cylin'er 9hich is surroun'e' +y ! °C2 The fins aree)ten'e' 12 cm from the cylin'er surface an' the heat transfer co"efficient +et9een

    cylin'er an' atmospheric air is 1 3Bm /2 Calculate the rate of heat transfer an' thetemperature at the en' of fins 9hen the cylin'er surface is at 16= °C2

    41

  • 8/9/2019 Ppt Aero 6sem HT

    42/232

    iven

    /um'er of fins 17Thermal conductivity 177 9Dm Thickness of the fin t 7!KI mm 7!KI × 17 .= m"en*th of en*ine cylinder 1m-iameter of the cylinder d

  • 8/9/2019 Ppt Aero 6sem HT

    43/232

    Heat transfer from unfinned surface due to convection is

    2

    b

    2

    Q h A T

    = h d- ' )+ t -3 T T 3

    0 Area of unfinned surface = Area of cylinder ' Area offin

    = )# 0 +"+$+ ) 0)+ +":# )+ )"# )+ 0!

    π

    π

    − −

    = ∆× × × −

    × × × − × × × ×

    Q

    ' ++

    2Q :#"* % """""""""" C3=

    So) Total heat transfer 1 J 6 I;1 J =KI!;

    Total heat transfer Q @#$"* %=

    9e kno( that)

    Temperature distri'ution Lshort fin) end insulated

    b

    T T cos h m 0-'T T cos h m-3

    − =−L&rom HMT data 'ook +a*e /o!?1

    Temperature at the end of fin) so put x "

    12 Aluminium fins 12 cm 9i'e an' 1= mm thic are place' on a 2 cm 'iameter tu+eto 'issipate the heat2 The tu+e surface temperature is 1:= °C am+ient temperature is

    =°C2 Calculate the heat loss per fin2 Ta e h 1!= 3Bm C an' / == 3Bm C foraluminium2

    iven

    9ide of the fin ' 1!I cm 1!I × 17 .6 mThickness t 17 mm 17 × 17 .= m-iameter of the tu'e d 6!I cm 6!I × 17 .6 m

    Surface temperature T ' 1K7°C J 6K= ??= #m'ient temperature T ∞ 67 °C J 6K= 6 = Heat transfer co.efficient h 1=7 9Dm 6 °CThermal conductivity 677 9Dm °C

    Solution

    #ssume fin end is insulated) so this is short fin end insulated type pro'lem!Heat transfer Lshort fin) end insulated

    @h+ #A1D6 @T ' . T ∞A tan h @m"A PP!!@1A L&rom HMT data 'ook +a*e /o!?19here

    # – #rea Breadth × thickness

    43

  • 8/9/2019 Ppt Aero 6sem HT

    44/232

    2

    ! 2

    2

    )"# )+ )+ )+

    A )"# )+ m

    8 8erimeter 2 b t3 = 20 )"# )+ 3 )+ )+ 3

    8 = +"+# m

    h8 m =

    5A

    ) + +"+# =

    2++ )"#

    − −

    − −

    = × × ×= ×

    − = +× + ×

    ×× '!

    ')

    )+

    m = )!": m

    ×

    ! )/ 2

    '2

    )3 Q = 0) + +"+# 2++ )"# )+

    !! '2@ 3 tan h )!": )"# )+ 3 Q )!" %

    −⇒ × × × ×

    × × × ×=

    2 A straight rectangular fin has a length of ! mm> thic ness of 125 mm2 The thermalcon'uctivity is 3Bm °C2 The fin is e)pose' to a convection environment at = °C an' h

    == 3Bm °C2 Calculate the heat loss for a +ase temperature of 1 = °C2

    iven

    "en*th " =I mm 7!7=I mThickness t 1!? mm 7!771? mThermal conductivity II 9Dm °C&luid temperature T ∞ 67 °C J 6K= 6 = Base temperature T ' 1I7 °C J 6K= ?6= Heat transfer co.efficient h I77 9Dm 6 !

    Solution

    "en*th of the fin is =I mm) so this is short fin type pro'lem! #ssume end is insulated!

    Heat transferred LShort fin) end insulated

    @h+ #A1D6

    @T ' . T ∞A tan h @m"A PP!@1AL&rom HMT data 'ook +a*e /o!?1

    9here+ – +erimeter 6 × "en*th @#pproximatelyA

    6 × 7!7=I8 = +"+: m

    # – #rea "en*th × thickness 7!7=I × 7!771?

    # 2 A !"@ )+ m−= ×

    44

  • 8/9/2019 Ppt Aero 6sem HT

    45/232

    h8m

    5A=

    '#

    ')

    #++ +"+: =

    ## !"@ )+

    m = )) "@ m

    ×× ×

    Su'stitutin* h) p) ) #) T ' ) T∞) m) " values in e$uation @1A'# )/ 2)3 Q = 0#++ +"+: ## !"+ )+

    !2 ' 2@ 3 tan h )) "@ +"+ #3

    Q = @"* %

    ⇒ × × × ×× × ×

    !2 A heating unit ma'e in the form of a cylin'er is 6 cm 'iameter an' 12 m long2 t isprovi'e' 9ith = longitu'inal fins ! mm thic 9hich protru'e = mm from the surfaceof the cylin'er2 The temperature at the +ase of the fin is ;= °C2 The am+ienttemperatures is °C2 The film heat transfer co"efficient from the cylin'er an' fins tothe surroun'ing air is 1= 3Bm /2 Calculate the rate of heat transfer from the finne'9all to the surroun'ing2 Ta e / (= 3Bm/2

    iven

    -iameter of the cylinder d < cm 7!7< m"en*th of the cylinder 1!6 m

    /um'er of fins 67Thickness of fin @tA = mm 7!77= m"en*th of fin " I7 mm 7!7I7 mBase temperature T ' ;7 °C J 6K= =I= #m'ient temperature T ∞ 6I °C J 6K= 6 ; &ilm heat transfer co.efficient h 17 9Dm 6 Thermal conductivity 7 9Dm !

    Solution

    "en*th of the fins is I7 mm! #ssume end is insulated! So this is short fin end insulatedtype pro'lem!

    9e kno(Heat transferred Lshort fin) end insulated

    @h+ #A1D6 @T ' . T ∞A tan h @m"A PP!!@1A L&rom HMT data 'ook +a*e /o! ?1

    9here+ – +erimeter 6 × "en*th of the cylinder

    45

  • 8/9/2019 Ppt Aero 6sem HT

    46/232

    6 × 1!6 8 2"! m=

    # – #rea "en*th of the cylinder × thickness of fin

    1!6 × 7!77= 2 A "$ )+ m−= ×

    h8m

    5A=

    '

    ')

    )+ 2"! =

    @+ "$ )+

    m = *"$ m

    ×× ×

    )/ 2)3 Q = 0)+ 2"! @+ "$ )+ # ' 2@*3 tan h *"$ +"+#+3

    Q $2")$ %

    −⇒ × × × ×

    × × ×=

    Heat transferred per fin

  • 8/9/2019 Ppt Aero 6sem HT

    47/232

    re

    +

    T Te """" )3

    T T

    ρ ρ

    − × × × ∞

    − =− L&rom HMT data 'ook +a*e /o!?;

    9e kno()

    Characteristics len*th c>

    - A

    =

    47

  • 8/9/2019 Ppt Aero 6sem HT

    48/232

    c

    ht

    C -

    +)2+

    t@++ +"+) 2:++

    T'T)3 e

    T T

    #2 ' 2* e

    :: ' 2*')2+

    In +"!*@3 = t@++ +"+) 2:++

    t = )!!"*$ s

    ρ ρ

    − × × × ∞

    ∞ − × × ×

    ⇒ =−

    ⇒ =

    ⇒ ×× ×

    Time re$uired for the cu'e to reach 6I7 °C is 1??!;< s!

    2 A copper plate mm thic is heate' up to 5== °C an'

  • 8/9/2019 Ppt Aero 6sem HT

    49/232

    Biot num'er cih-

    B5

    =

    )++ +"++)*$

    ×= B i !2"#@ )+ +")−× <

    Biot num'er value is less than 7!1! So this is lumped heat analysis type pro'lem!

    &or lumped parameter system)

    hAt

    C >

    +

    T Te

    T T ρ ρ

    − × × × ∞

    − =−PPP!@1A

    L&rom HMT data 'ook +a*e /o!?;9e kno()

    Characteristics len*th " c >

    A

    c

    ht

    C -

    +

    )++t

    $+ +"++) **++

    T'T)3 e

    T T

    2 ' + e

    $: ' +

    t = @2"! s

    ρ ρ

    − × × × ∞

    ∞− × × ×

    ⇒ =−

    ⇒ =

    Time re$uired for the plate to reach I7 °C is 6!?= s!62 A 1 cm 'iameter long +ar initially at a uniform temperature of 5= ° C is place' in a

    me'ium at 6 = °C 9ith a convective co"efficient of 3Bm /2 Determine the timere

  • 8/9/2019 Ppt Aero 6sem HT

    50/232

    Characteristic "en*th c1

    -2

    =

    c

    +"+$ =2

    - +"+ m=9e kno()

    Biot num'er cih-

    B5

    =22 +"+

    2+×=

    B i 7!7== 7!1

    Biot num'er value is less than 7!1! So this is lumped heat analysis type pro'lem!&or lumped parameter system)

    hAt

    C >

    +

    T Te

    T T ρ ρ

    − × × × ∞

    − =−PPP!@1A

    L&rom HMT data 'ook +a*e /o!?;9e kno()

    Characteristics len*th " c >

    A

    c

    ht

    C -

    +

    22 t)+#+ +"+ #*+

    T'T)3 e

    T T

    #2* ' @2 e

    ) ' @2

    t = $+"* s

    ρ ρ − × × × ∞

    ∞− ×

    × ×

    ⇒ =−

    ⇒ =

    Time re$uired for the cu'e to reach 6II °C is =

  • 8/9/2019 Ppt Aero 6sem HT

    51/232

    &inal temperature T ∞ 177 °C J 6K= =K= %ntermediate temperature T 1I7 °C J 6K= ?6= Heat transfer co.efficient h 17 9Dm

    6

    To fin'

    Time re$uired for the 'all to reach 1I7 °CL&rom HMT data 'ook +a*e /o!1

    Solution

    -ensity of steel is K;== k*Dm =

    :* 4. / m ρ =&or sphere)

    Characteristic "en*th c 1- =

    c

    +"+2# =

    - *" )+ m−= ×9e kno()

    Biot num'er cih-

    B5

    =

    )+ *" )+

    #

    −× ×=

    B i 6!=; × 17 .= 7!1

    Biot num'er value is less than 7!1! So this is lumped heat analysis type pro'lem!&or lumped parameter system)

    hAt

    C >

    +

    T Te

    T T ρ ρ

    − × × × ∞

    − =−PPP!@1A

    L&rom HMT data 'ook +a*e /o!?;9e kno()

    Characteristics len*th " c > A

    c

    ht

    C -

    +

    )+t

    !$+ *" )+ :*

    T'T)3 e

    T T

    !2 ' : e

    :2 ' :!2 ' : )+

    In t:2 ' : !$+ *" )+ :*

    t = #*!+"#! s

    ρ ρ

    − × × × ∞

    ∞− × × × ×

    ⇒ =−

    ⇒ =

    −⇒ = ×× × ×⇒

    Time re$uired for the 'all to reach 1I7 °C is I;?7!I? s!;2 An aluminium sphere mass 2 g an' initially at a temperature of (= o is su''enly

    51

  • 8/9/2019 Ppt Aero 6sem HT

    52/232

    immerse' in a flui' at 1 °C 9ith heat transfer co"efficient ; 3Bm ! /2 Estimate the timere

  • 8/9/2019 Ppt Aero 6sem HT

    53/232

    B i K!?1 × 17 .= 7!1

    Biot num'er value is less than 7!1! So this is lumped heat analysis type pro'lem!

    &or lumped parameter system)

    hAt

    C >

    +

    T Te

    T T ρ ρ

    − × × × ∞

    − =−PPP!@1A

    L&rom HMT data 'ook +a*e /o!?;9e kno()

    Characteristics len*th " c > A

    c

    ht

    C -

    +

    #*t

    @++ +"+2$2 2:++

    T'T)3 e

    T T

    $* ' 2** e

    #$ ' 2**$* ' 2** #*

    In t#$ ' 2** @++ +"+2$2 2:++

    t = ) ##" $ s

    ρ ρ

    − × × × ∞

    ∞− × × ×

    ⇒ =−

    ⇒ =

    − ⇒ = × × ×

    ⇒ Time re$uired to cool the aluminium to I °C is 1=II!< s!

    (2 Alloy steel +all of mm 'iameter heate' to ;== °C is

  • 8/9/2019 Ppt Aero 6sem HT

    54/232

    Heat transfer co.efficient h 1I7 k8Dhr m 6

    2

    2

    )#+ )+++

    $++ s m 5!)"$$ % /m 5

    ×=

    =Solution

    Case ?i@ Temperature of +all after 1= sec2

    &or sphere)

    Characteristic "en*th c1

    - =

    c

    +"++$ =

    - +"++2 m=9e kno()

    Biot num'er cih-

    B5

    =!)"$$: +"++2

    #$"@!×=

    B i 1!?< × 17 .= 7!1

    Biot num'er value is less than 7!1! So this is lumped heat analysis type pro'lem!&or lumped parameter system)

    hAt

    C >

    +

    T Te

    T T ρ ρ

    − × × × ∞

    − =−PPP!@1A

    L&rom HMT data 'ook +a*e /o!?;9e kno()

    Characteristics len*th " c >

    A

    c

    h tC -

    +

    !)"$$:)+

    !#+ +"++2 :*$+

    T'T)3 e """""""""" 23

    T T

    T ' : e)+: ' :

    T = )+ 2"@# 5

    ρ ρ − × × × ∞

    ∞− × × ×

    ⇒ =−

    ⇒ =

    Case ?ii@ Time for +all to cool to 5== °C

    ∴T ?77 °C J 6K=

  • 8/9/2019 Ppt Aero 6sem HT

    55/232

    c

    ht

    C -

    +!)"$$:

    t!#+ +"++2 :*$+

    T'T23 e """"""" 23

    T T

    $: ' : e)+: ' :

    $: ' : !)"$$: In t

    )+: ' : !#+ +"++2 :*$+

    t = )! "*!@ s

    ρ ρ

    − × × × ∞

    ∞ − × × ×

    ⇒ =−

    ⇒ =

    − ⇒ = × × × ⇒

    !=2 A large 9all cm thic has uniform temperature != °C initially an' the 9alltemperature is su''enly raise' an' maintaine' at 5== °C2 %in'

    12 The temperature at a 'epth of =2; cm from the surface of the 9all after 1= s22 nstantaneous heat flo9 rate through that surface per m per hour2

    Ta e α =2==; m Bhr> / 6 3Bm °C2

    iven

    Thickness " 6 cm 7!76 m%nitial temperature T i =7°C J 6K= =7= Surface temperature T 7 ?77 °C J 6K=

  • 8/9/2019 Ppt Aero 6sem HT

    56/232

    Case ?i@

    &or semi infinite solid!+

    i +

    T Terf

    T T 2 at− = −

    L&rom HMT data 'ook +a*e /o! I7+

    i +

    T T erf D3 """"""" )3

    T T−

    ⇒ =−9here)

    D2 at

    =

    +ut x 7!77; m) t 17 s) α 6!66 × 17 .< m 6Ds!

    '$

    +"++* D =

    2 2"22 )+ )+

    D = +"*!*

    ⇒× ×

    Q 7!;?;) correspondin* erf @QA is 7!KK7<

    erf D3 = +"::+$⇒

    L,efer HMT data 'ook +a*e /o!I6+

    i +

    T 'T)3 +"::+$

    T T

    T ' $: +"::+$

    + ' $:T ' $:

    +"::+$' :+

    T = *:"*# 5

    ⇒ =−

    ⇒ =

    ⇒ =

    Case ?ii@

    %nstantaneous heat flo(

    [ ]2

    ! t+ i5 T T< e

    a t

    α

    π

    − −=

    L&rom HMT data 'ook +a*e /o!I7

    56

  • 8/9/2019 Ppt Aero 6sem HT

    57/232

    t =

  • 8/9/2019 Ppt Aero 6sem HT

    58/232

    +

    i +

    T Terf

    T T 2 at− = −

    L&rom HMT data 'ook +a*e /o! I7+

    i +

    T T erf D3 where,

    T T−

    ⇒ =−

    D2 at

    =

    $2 )* erf D3

    )+2 )*−

    ⇒ =−

    ⇒ 7!?=6 erf @QA

    ⇒ erf @QA 7!?=6

    erf @QA 7!?=6) correspondin* Q is 7!?1

    ⇒ D +"!)=

    9e kno(

    D2 at

    =

    '#

    22

    2 #

    +"+!# +"!) =

    2 )"$$ )+ t

    +"+!#3 +"!)3

    23 )"$$ )+ t

    t = )*)"!2 s

    ⇒× ×

    ⇒ = × × ×⇒

    Time re$uired to reach =I7 °C is 1;1!?6 s!

    2 nstantaneous heat flo9

    [ ]2

    ! t+ i5 T T< ea t

    α

    π

    − −=

    L&rom HMT data 'ook +a*e /o!I7t =7 minutes @5ivenAt 1;77 s

    2

    #+"+!#3

    ! )"$$ )+ )*++

    '#

    2

    !*"# )* )+2 3 < e

    )"$$ )+ )*++

    < )+@:2#"! % / m

    π

    − − × × × −⇒ = ×

    × × ×=

    58

  • 8/9/2019 Ppt Aero 6sem HT

    59/232

    L/e*ative si*n sho(s that heat lost from the in*ot !

    !2 Total heat energy

    + i

    #

    t< 250T T

    :2++2 !*"# )* )+2 3

    )"$$ )+

    τ πα

    π −

    = −

    = × − × × ×LTime is *iven) 6 hr K677 s

    $ 2< *+ "# )+ / mτ = − ×L/e*ative si*n sho(s that heat lost from the in*ot! 2 A large steel plate cm thic is initially at a uniform temperature of 5== °C2 t issu''enly e)pose' on +oth si'es to a surroun'ing at 6= °C 9ith convective heat transferco"efficient of ; 3Bm /2 Calculate the centre line temperature an' the temperatureinsi'e the plate 12 cm from theme' plane after ! minutes2

    Ta e / for steel 5 2 3Bm/> α for steel =2=5! m Bhr2

    iven

    Thickness " I cm 7!7I m%nitial temperature T i ?77 °C J 6K=

  • 8/9/2019 Ppt Aero 6sem HT

    60/232

    Biot num'er cih-

    B5

    =

    2*# +"+2#!2"#×=

    iB +")$:#⇒ =

    7!1 B i 177) So this is infinite solid type pro'lem!nfinite Soli's

    Case ?i@

    LTo calculate centre line temperature @orA Mid plane temperature for infinite plate)refer HMT data 'ook +a*e /o!I Heisler chart !

    2c

    '#

    2

    c

    tD a is 6ourier number =

    -

    )")@ )+ )*+ =

    +"+2#3

    D a is 6ourier number = "!2

    h-Curve

    5

    α →

    × ×

    =

    c

    2*# +"+2#+")$:

    !2"#

    h-Curve +")$:

    5

    ×= =

    = =

    Q axis value is =!?6) curve value is 7!1

  • 8/9/2019 Ppt Aero 6sem HT

    61/232

    Case ?ii@

    Temperature @TxA at a distance of 7!716I m from mid planeL,efer HMT data 'ook +a*e /o!

  • 8/9/2019 Ppt Aero 6sem HT

    62/232

    : 2)"! )+ m / s"α −= ×

    Solution&or Sphere)

    Characteristic "en*th c1

    - =

    c

    +"+# =

    - +"+)$ m=9e kno()

    Biot num'erc

    i

    h-

    B 5=$ +"+)$

    +"$×=

    iB +")$⇒ =7!1 B i 177) So this is infinite solid type pro'lem!

    nfinite Soli's

    LTo calculate centre line temperature for sphere) refer HMT data 'ook +a*e /o!

  • 8/9/2019 Ppt Aero 6sem HT

    63/232

    +

    i

    +

    +

    T T +"*$

    T T

    T 2:* +"*$2@ 2:*

    T 2@+"@ 5

    −⇒ =−

    −⇒ =−⇒ =

    Center line temperature T 7 6 7! !

    !52 A long steel cylin'er 1 cm 'iameter an' initially at = °C is place' into furnace at; = °C 9ith h 15= 3Bm /2 Calculate the time re

    1! Time @tA re$uired for the axis temperature to reach ;77 °C!6! Correspondin* temperature @T tA at a radius of I!? cm!

    Solution

    &or Cylinder)

    Characteristic "en*th c1 +"+$

    -2 2

    = =

    c- +"+ m=9e kno()

    Biot num'er B i ch-5

    )!+ +"+

    2)×=

    i B +"2⇒ =

    63

  • 8/9/2019 Ppt Aero 6sem HT

    64/232

    7!1 B i 177) So this is infinite solid type pro'lem!nfinite Soli's

    Case ?i@

    +

    A is temperature or3 T *++ CCentre line temperature

    = °

    To ;77 °C J 6K= 17K= Time @tA R

    L,efer HMT data 'ook +a*e /o!

  • 8/9/2019 Ppt Aero 6sem HT

    65/232

    r +"+#!Curve +"@

    1 +"+$

    h1D a is =5

    )!+ +"+$ = +"!

    2)

    = = =

    × =

    Curve value is 7! ) Q axis value is 7!?) correspondin* 2 axis value is 7!;?!

    r

    +

    T T E a is = +"*!

    T T∞

    −⇒ =−

    r

    +

    r

    r

    T T +"*!T T

    T )+@ +"*!

    )+: )+@

    T )+:$"2 5

    −⇒ =−

    −⇒ =−⇒ =

    1! Time re$uired for the axis temperature to reach ;77 °C is 6 ?I! s!6! Temperature @Tr A at a radius of I!? cm is 17K

    65

  • 8/9/2019 Ppt Aero 6sem HT

    66/232

    U$ T 0

    %ntroduction

    &ree convection in atmosphere free convection on a vertical flat plate

    Empirical relation in free convection

    &orced convection

    "aminar and tur'ulent convective heat transfer analysis in flo(s

    'et(een parallel plates) over a flat plate and in a circular pipe!

    Empirical relations)

    #pplication of numerical techni$ues in pro'lem solvin*!

    66

  • 8/9/2019 Ppt Aero 6sem HT

    67/232

    C.$VECT .$

    *ART 0 A

    12 3hat is 'imensional analysis4

    -imensional analysis is a mathematical method (hich makes use of the study of thedimensions for solvin* several en*ineerin* pro'lems! This method can 'e applied to all typesof fluid resistances) heat flo( pro'lems in fluid mechanics and thermodynamics!

    2 State -uc ingham π theorem2

    Buckin*ham π theorem states as &ollo(s: 3%f there are n varia'les in a dimensionallyhomo*eneous e$uation and if these contain m fundamental dimensions) then the varia'les arearran*ed into @n – mA dimensionless terms! These dimensionless terms are called π terms!

    !2 3hat are all the a'vantages of 'imensional analysis4

    1! %t expresses the functional relationship 'et(een the varia'les in dimensional terms!6! %t ena'les *ettin* up a theoretical solution in a simplified dimensionless form!=! The results of one series of tests can 'e applied to a lar*e num'er of other similar

    pro'lems (ith the help of dimensional analysis!

    52 3hat are all the limitations of 'imensional analysis4

    1! The complete information is not provided 'y dimensional analysis! %t only indicatesthat there is some relationship 'et(een the parameters!

    6! /o information is *iven a'out the internal mechanism of physical phenomenon!=! -imensional analysis does not *ive any clue re*ardin* the selection of varia'les!

    2 Define Reynol's num+er ?Re@2

    %t is defined as the ratio of inertia force to viscous force!Inertia force

    1e>iscous force

    =

    62 Define pran'tl num+er ?*r@2

    %t is the ratio of the momentum diffusivity of the thermal diffusivity!

    67

  • 8/9/2019 Ppt Aero 6sem HT

    68/232

    7omentum diffusivity8r

    Thermal diffusivity=

    :2 Define $usselt num+er ?$u@2

    %t is defined as the ratio of the heat flo( 'y convection process under an unittemperature *radient to the heat flo( rate 'y conduction under an unit temperature *radientthrou*h a stationary thickness @"A of metre!

    /usselt num'er @/uA convcond

    Q"

    Q

    ;2 Define rash of num+er ? r@2

    %t is defined as the ratio of product of inertia force and 'uoyancy force to the s$uare of viscous force!

    2

    Inertia force Buyoyancy forceFr

    >iscous force3×=

    (2 Define Stanton num+er ?St@2

    %t is the ratio of nusselt num'er to the product of ,eynolds num'er and prandtlnum'er!

    9uSt

    1e 8r =

    ×

    1=2 3hat is meant +y $e9tonion an' non 0 $e9tonion flui's4

    The fluids (hich o'ey the /e(tonFs "a( of viscosity are called /e(tonion fluids andthose (hich do not o'ey are called non – ne(tonion fluids!

    112 3hat is meant +y laminar flo9 an' tur+ulent flo94

    8aminar flo9 "aminar flo( is sometimes called stream line flo(! %n this type of flo() thefluid moves in layers and each fluid particle follo(s a smooth continuous path! The fluid particles in each layer remain in an orderly se$uence (ithout mixin* (ith each other!

    Tur+ulent flo9 %n addition to the laminar type of flo() a distinct irre*ular flo( is fre$uencyo'served in nature! This type of flo( is called tur'ulent flo(! The path of any individual

    particle is 0i* – 0a* and irre*ular! &i*! sho(s the instantaneous velocity in laminar andtur'ulent flo(!

    1 2 3hat is hy'ro'ynamic +oun'ary layer4

    %n hydrodynamic 'oundary layer) velocity of the fluid is less than N of free streamvelocity!

    68

  • 8/9/2019 Ppt Aero 6sem HT

    69/232

    1!2 3hat is thermal +oun'ary layer4

    %n thermal 'oundary layer) temperature of the fluid is less than N of free streamvelocity!

    152 Define convection2

    Convection is a process of heat transfer that (ill occur 'et(een a solid surface and afluid medium (hen they are at different temperatures!

    1 2 State $e9ton7s la9 of convection2

    Heat transfer from the movin* fluid to solid surface is *iven 'y the e$uation h # @T ( – T ∞A

    This e$uation is referred to as /e(tonFs la( of coolin*!9hereh – "ocal heat transfer coefficient in 9Dm 6 !# – Surface area in m 6

    T ( – Surface @orA 9all temperature in T∞ . Temperature of fluid in !

    162 3hat is meant +y free or natural convection4

    %f the fluid motion is produced due to chan*e in density resultin* from temperature*radients) the mode of heat transfer is said to 'e free or natural convection!

    1:2 3hat is force' convection4

    %f the fluid motion is artificially created 'y means of an external force like a 'lo(er or fan) that type of heat transfer is kno(n as forced convection!

    1;2 Accor'ing to $e9ton7s la9 of cooling the amount of heat transfer from a soli' surface of area A at temperature T 9 to a flui' at a temperature T ∞ is given +y 2

    #ns : h # @T ( – T ∞A

    1(2 3hat is the form of e

  • 8/9/2019 Ppt Aero 6sem HT

    70/232

    The thickness of the 'oundary layer has 'een defined as the distance from the surfaceat (hich the local velocity or temperature reaches N of the external velocity or

    temperature!

    *ART 0 -

    12 Air at = °C> at a pressure of 1 +ar is flo9ing over a flat plate at a velocity of ! mBs2 if

    the plate maintaine' at 6= °C> calculate the heat transfer per unit 9i'th of the plate2Assuming the length of the plate along the flo9 of air is m2

    iven &luid temperature T ∞ 67 °C) +ressure p 1 'ar) elocity = mDs)

    +late surface temperature T (

  • 8/9/2019 Ppt Aero 6sem HT

    71/232

    ! #1e #" :: )+ # )+= × < ×,eynolds num'er value is less than I × 17 I ) so this is laminar flo(!

    &or flat plate) "aminar flo()"ocal /usselt /um'er /u x 7!==6 @,eA7!I @+rA7!===

    ! +"# +"

    s

    9u +" 2 #" :: )+ 3 +"$@@3

    9u ):#"2:

    %e 4now that,

    h --ocal 9usselt 9umber 9u

    5

    = × ×=

    ×=

    sh 2):#"2:2$"#$ )+

    −×

    ⇒ =×

    "ocal heat transfer coefficient h x 6!=6K 9Dm 6 9e kno()

    #vera*e heat transfer coefficient h 6 × hxh 2 2" 2:= ×

    h ?! calculate the follo9ing at ) !== mm2

    12 #y'ro'ynamic +oun'ary layer thic ness>2 Thermal +oun'ary layer thic ness>

    !2 8ocal friction coefficient>52 Average friction coefficient>

    2 8ocal heat transfer coefficient62 Average heat transfer coefficient>:2 #eat transfer2

    iven &luid temperature T ∞ 67 °C elocity = mDs 9ide 9 1 m

    Surface temperature T ( ;7 °C-istance x =77 mm 7!= m

    Solution 9e kno(

    71

  • 8/9/2019 Ppt Aero 6sem HT

    72/232

    &ilm temperature wf T T

    T2

    ∞+=

    f

    '$ 2

    '

    *+ 2+2

    T #+ C

    8roperties of air at #+ C

    Gensity = )"+@ 4./m

    5inematic viscosity v = ):"@# )+ m / s8randtl number 8r =+"$@*

    Thermal conductivity 5 = 2*"2$ )+ % /m5

    ρ

    +=

    = °°

    ×

    ×

    9e kno()

    ,eynolds num'er ,e (-v

    $

    ! #

    +"):"@# )+

    1e #"+) )+ # )+

    −×= ×

    = × < ×

    Since ,e I × 17 I ) flo( is laminar

    &or &lat plate) laminar flo()

    12 #y'ro'ynamic +oun'ary layer thic ness

    +"#h

    ! +"#

    h

    # 1e3

    = # +" #"+) )+ 3

    $": )+ m

    δ

    δ

    = × ×× × ×

    = ×2 Thermal +oun'ary layer thic ness

    ( )

    +"TD h

    +"TD

    TD

    8r3

    $": )+ +"$@*3

    :"# )+ m

    δ δ

    δ

    δ

    − −

    =⇒ = ×

    = ×

    !2 8ocal %riction coefficient

    +"#f

    ! +"#

    'f

    C +"$$! 1e3

    = +"$$! #"+) )+ 3

    C = 2"@$ )+

    ×

    52 Average friction coefficient

    72

  • 8/9/2019 Ppt Aero 6sem HT

    73/232

    '+"#f-

    ! +"#

    '

    f-

    C )" 2* 1e3

    = )" 2* #"+) )+ 3

    = #"@ )+

    C #"@ )+

    ×= ×

    2 8ocal heat transfer coefficient ?h ) @

    "ocal /usselt /um'er /u x 7!==6 @,eA7!I @+rA7!===

    ! +"+" 2 #"+) )+ 3 +"$@*3

    9u $#"@

    = ×

    =9e kno(

    "ocal /usselt /um'er

    [ ]2

    2

    h -9u

    5h +"

    $#"@ = - = +" m2 "2$ )+

    h $"2+ %/m 5

    -ocal heat transfer coefficient h $"2+ % / m 5

    ×=

    ×= ×⇒ =

    =

    Q

    62 Average heat transfer coefficient ?h@

    2

    h 2 h

    2 $"2+

    h )2"!) % / m 5

    = ×= ×=

    :2 #eat transfer

    9e kno( that)wQ h A T T 3

    = )2"!) ) +" 3 *+'2+3

    Q = 2 " * %atts

    ∞= −× ×

    !2 Air at != °C flo9s over a flat plate at a velocity of mBs2 The plate is m long an' 12m 9i'e2 Calculate the follo9ing

    12 -oun'ary layer thic ness at the trailing e'ge of the plate>2 Total 'rag force>

    !2 Total mass flo9 rate through the +oun'ary layer +et9een ) 5= cm an' ) ;cm2

    iven &luid temperature T ∞ =7°C elocity 6 mDs

    73

  • 8/9/2019 Ppt Aero 6sem HT

    74/232

    "en*th " 6 m 9ide 9 9 1!I m

    To fin'12 -oun'ary layer thic ness

    2 Total 'rag force2!2 Total mass flo9 rate through the +oun'ary layer +et9een ) 5= cm an' ) ;

    cm2Solution +roperties of air at =7 °C

    $ 2

    )")$# 4./m

    v )$ )+ m / s8r +":+)5 2$":# )+ % /m5

    ρ −

    == ×=

    = × −9e kno()

    ,eynolds num'er (-

    1ev

    =

    $

    # #

    #

    2 2)$ )+

    1e 2"# )+ # )+

    Since 1e # )+ ,flow is laminar

    −×= ×

    = × < ××

    &or flat plate) laminar flo() Lfrom HMT data 'ook) +a*e /o!

    Hydrodynamic 'oundary layer thickness

    +"#h

    # +"#

    h

    # 1e3

    = # 2 2"# )+ 3+"+2 m

    δ

    δ

    = × ×× × ×

    =

    Thermal 'oundary layer thickness)

    +"t h 8r3δ δ

    −×'+"

    TD

    =+"+2 +":+)3+"+22# mδ

    ×=

    9e kno()#vera*e friction coefficient)

    +"#f-

    # +"#

    'f-

    C )" 2* 1e3

    = )" 2* 2"# )+ 3

    C 2"$# )+

    =× ×

    = ×

    9e kno(

    74

  • 8/9/2019 Ppt Aero 6sem HT

    75/232

    f- 2

    '2

    ' 2

    '

    tC

    (2

    t 2"$# )+

    )")$# 232

    Avera.e shear stress t = $") )+ 9/ m

    Gra. force = Area Avera.e shear stress

    = 2 )"# $") )+Gra. force = +"+)* 9

    Gra. force on two sides of the plate= +"+)*

    ρ =

    ⇒ × = ×

    ⇒ ××

    × × ×

    ×2= +"+ $ 9

    Total mass flo( rate 'et(een x ?7 cm and x ;I cm!

    [ ]h h#

    m ( *# !+*

    ρ δ δ ∆ = = − =

    Hydrodynamic 'oundary layer thickness

    +"#h +"#

    +"#

    # 1e3

    ( = # +"*#

    v

    δ −=−

    = × ×× × ×

    +"#

    $

    HD +"*#

    '+"#h =+"!+

    +"#

    +"#

    $

    HD +"!+

    '

    2 +"*## +"*#

    )$ )++"+) + m

    = # 1e3

    (# +"!+v

    2 +"!+# +"!+

    )$ )+

    *"@ )+ m

    #)3 m= )")$# 2 +"+) + *"@ )+

    *m = #"@: )+ 5. /

    δ

    δ

    δ

    =

    −=

    × = × × × =

    × ×

    × = × × ÷ × = × × ÷×

    = ×

    ⇒ ∆ × × − × ∆ × s,

    52 Air at != °C> %lo9s over a flat plate at a velocity of 5 mBs2 The plate measures = × !=

    75

  • 8/9/2019 Ppt Aero 6sem HT

    76/232

    cm an' is maintaine' at a uniform temperature of (= °C2 Compare the heat loss fromthe plate 9hen the air flo9s

    ?a@ *arallel to = cm>?+@ *arallel to != cmAlso calculate the percentage of heat loss2

    iven &luid temperature T ∞ =7°C elocity ? mDs +late dimensions I7 cm × =7 cm

    2+"#+ +" + m= × Surface temperature T ( 7°C

    Solution &ilm temperature wf T TT 2∞+=

    f

    @+ +

    2T $+ C

    +=

    = °

    +roperties of air at

  • 8/9/2019 Ppt Aero 6sem HT

    77/232

    2

    h -9(

    5

    h +"#+@#" #2*"@$ )+

    -ocal heat transfer coefficient h #"#2 %/m 5

    =

    ×= ×=

    9e kno(

    #vera*e heat transfer coefficient h 2 h= ×

    2

    ) w

    )

    h 2 #"#2

    h ))"+! %/m 5

    Heat transfer Q h A T T 3))"+! +"# +" 3 @+ +3

    Q @@" $ %

    ⇒ = ×=

    = −= × × × −

    =

    Case ?ii@ 9hen the flo( is parallel to =7 cm side!

    ,eynolds num'er ,e (-v

    $

    ! #

    #

    ! +")*"@: )+

    1e = $" )+ # )+Since 1e # )+ , flow is laminar

    −×= ×

    × < ××

    &or flat plate) laminar flo()"ocal /usselt /um'er

    +"# +"

    ! +"# +"

    9( +" 2 1e3 +"$@$3

    +" 2 $" 2 )+ 3 +"$@$39( :!"++*

    == ×

    =

    9e kno( that) / xh -5

    2

    h +" +:!"++*2*"@$ )+

    h :")!) %/m 5

    −×= ×

    ⇒ =

    2-ocal heat transfer coefficient h :")!) %/m 5=#vera*e heat transfer coefficient h 6 ×hx

    77

  • 8/9/2019 Ppt Aero 6sem HT

    78/232

    2

    2 w

    w

    2

    h 2 :")!

    h )!"2* %/m 5

    %e 4nowHeat transfer Q h A T T 3

    h - % T T 3

    )!"2* +" +"# $ + 3Q )2*"#%

    = ×=

    = × × −= × × −= × × × −

    =

    Case ?iii@2 )

    )

    Q Q; heat loss = )++Q

    )2*"#'@@" $ = )++

    @@" $; heat loss = 2@" ;

    − ×

    ×

    2 Air at 5= °C is flo9s over a flat plate of =2( m at a velocity of ! mBs2 Calculate thefollo9ing

    12 .verall 'rag coefficient2 Average shear stress>

    !2 Compare the average shear stress 9ith local shear stress ?shear stress at thetrailing e'ge@

    iven %lui' temperature T ∞ 5= °C 8ength 8 =2( m Velocity U ! mBs2

    Solution

    +roperties of air at ?7 °C:

    '$ 2

    '

    )")2* 5./m

    = )$"@$ )+ m / s8r +"$@@

    5 2$"#$ )+ %/m5

    ρ

    ν

    == ×

    9e kno()

    ,eynolds num'er(-

    1ev

    =

    78

  • 8/9/2019 Ppt Aero 6sem HT

    79/232

    $

    # #

    #

    +"@)$"@$ )+

    1e )"#@ )+ # )+Since 1e # )+ , flow is laminar

    −×= ×

    = × < ××

    &or plate) laminar flo()

    -ra* coefficient @orA #vera*e skin friction coefficient

    +"#f-

    # +"#

    f-

    C )" 2* 1e3

    )" 2* )"#@ )+ 3

    C " )+

    = ×= × ×

    = ×9e kno(

    #vera*e friction coefficient f- 2C

    (2

    τ ρ

    =

    2

    f-

    ' 2

    2

    (C

    2" )+ )")2* 3

    =2

    Avera.e shear stress = +"+)$ 9/m

    ρ τ

    τ

    = ×

    × × ×

    9e kno()

    "ocal skin friction coefficient

    +"#f

    # +"#

    f

    C +"$$! 1e3

    +"$$! )"#@ )+ 3

    C )"$$ )+

    = ×= × ×

    = ×(e kno(

    "ocal skin friction coefficient f 2C (2

    τ ρ =

    2

    2

    2

    2

    2

    )"$$ )+)")2* 3

    2*"! )+ 9/m

    -ocal shear stress *"! )+ 9/ m

    -ocal shear stress *"! )+ 9/ m

    Avera.e shear stress +"+)$ 9 / m+"#2

    τ

    τ

    τ

    τ

    τ

    ⇒ × = ×

    = ×= ×

    ×=

    =

    79

  • 8/9/2019 Ppt Aero 6sem HT

    80/232

    62 Air at (= °C flo9s over a flat plate at a velocity of 6 mBs2 The plate is 1m long an' =2m 9i'e2 The pressure of the air is 6 $B 2 f the plate is maintaine' at a temperature of

    := °C> estimate the rate of heat remove' form the plate2

    iven &luid temperature T ∞ 6 7°C elocity < mDs! "en*th " 1 m

    9ide 9 7!I m +ressure of air + < k/Dm 6

    2$ )+ 9/ m= ×+late surface temperature T ( K7°C

    To fin' Heat removed from the plate

    Solution

    9e kno(

    &ilm temperature wf T T

    T2

    ∞+=

    f

    :+ 2@+2

    T )*+ C

    +=

    = °

    +roperties of air at 1;7 °C @#t atmospheric pressureA

    '$ 2

    '

    +":@@ 5./m

    = 2"!@ )+ m / s8r +"$*)

    5 :"*+ )+ %/m5

    ρ

    ν

    == ×

    $ote +ressure other than atmospheric pressure is *iven) so kinematic viscosity (ill vary (ith pressure! +r) ) C p are same for all pressures!

    inematic viscosityatm

    atm.iven

    88ν ν = ×

    [ ]

    $2

    # 2$

    ) bar 2"!@ )+

    $ )+ 9 / m Atmospheric pressure = ) bar

    )+ 9 /m2"!@ )+

    $ )+ 9/ m

    ν −

    ⇒ = × ×

    = × ××

    Q

    # 2

    '! 2

    ) bar = ) )+ 9 / m

    5inematic viscosity v = #")!# )+ m / s"

    × ×

    Q

    80

  • 8/9/2019 Ppt Aero 6sem HT

    81/232

  • 8/9/2019 Ppt Aero 6sem HT

    82/232

  • 8/9/2019 Ppt Aero 6sem HT

    83/232

    2

    2

    ) w

    w

    )

    h :*"* % / m 5

    Avera.e heat transfer coefficienth=:*"* %/m 5Head transfer Q h A T T 3

    h - % T T 3

    = :*"* +"* ) ++ ' !+3Q )$ @+"! %

    =

    = × × += × × × +

    × × ×=

    Case ?ii@ Entire plate is tur'ulent flo(:

    "ocal nusselt num'er /ux 7!76 < × @,eA7!; × @+rA7!===

    / x 7!76 < × @1!6

  • 8/9/2019 Ppt Aero 6sem HT

    84/232

    ;2 Air at = °C flo9s over a flat plate at 6= °C 9ith a free stream velocity of 6 mBs2Determine the value of the average convective heat transfer coefficient upto a length of

    1 m in the flo9 'irection2iven &luid temperature T ∞ 67 °C

    +late temperature T (

  • 8/9/2019 Ppt Aero 6sem HT

    85/232

    2

    2

    h )):#"2:

    2$"#$ )+

    -ocal nusselt numberJ 9( !"$# %/m 5 Avera.e heat transfer coefficientJ h = 2 h

    2 !"$#

    h @" ) %/m 5

    −×= ×

    = ×=

    (2 Air at °C at the atmospheric pressure is flo9ing over a flat plate at ! mBs2 f theplate is 1 m 9i'e an' the temperature T 9 : °C2 Calculate the follo9ing at a location of 1m from lea'ing e'ge2

    i2 #y'ro'ynamic +oun'ary layer thic ness>

    ii2 8ocal friction coefficient>iii2 Thermal +oun'ary layer thic ness>iv2 8ocal heat transfer coefficient

    iven &luid temperature T ∞ 6I °C elocity = mDs 9ide 9 1 m

    +late surface temperature T ( KI°C-istance 1 m

    To fin'

    1! Hydrodynamic 'oundary layer thickness!6! "ocal friction coefficient=! Thermal 'oundary layer thickness?! "ocal heat transfer coefficient

    Solution 9e kno(

    wf

    f

    $ 2

    '

    T T6ilm temperature T

    2

    :# 2# 2 5 = #+ C2

    T #+ C

    8roperties of air at #+ CGensity = )"+@

    5inematic viscosity )+ m / s

    8randtl number 8r = +"$@*

    Thermal conductivity 5 = 2*"2$ ) %/m

    ρ

    ν

    +=

    += = °

    = °°

    =17.95×

    × 5

    9e kno()

    85

  • 8/9/2019 Ppt Aero 6sem HT

    86/232

    ,eynolds num'er ,e(-

    0 = - )mv

    Q

    #$

    ) )"$: )+):"@# )+ −

    ×= = ××# #

    #

    1e )"$: )+ # )+

    Since 1e # )+ ,flow is laminar

    = × < ××

    &or flat plate) laminar flo()

    1! Hydrodynamic 'oundary layer thickness)

    +"#h

    # +"#

    h

    # 1e3 = # ) )"$: )+ 3

    +"+)22 m

    δ

    δ

    −−

    = × ×× × ×

    =

    6! "ocal friction coefficient

    '+"#f

    # +"#

    f

    C +"$!! 1e3

    = +"$!! )"$: )+ 3

    C )"$2 )+

    = ×

    =! Thermal 'oundary layer thickness)

    +"TD h

    +"

    TD

    8r3

    +"+)22 +"$@*3+"+) :#

    δ δ

    δ

    = ×= ×=

    ?! "ocal heat transfer coefficient @h xA:

    9e kno(

    "ocal nusselt num'er / x 7!==6 @,eA7!I @+rA7!===

    7!==6 @1!

  • 8/9/2019 Ppt Aero 6sem HT

    87/232

    1=2 Atmospheric air at !== / 9ith a velocity of 2 mBs flo9s over a flat plate of length 8

    m an' 9i'th 3 1m maintaine' at uniform temperature of 5== /2 Calculate thelocal heat transfer coefficient at 1 m length an' the average heat transfer coefficientfrom 8 = to 8 m2 Also fin' the heat transfer>

    iven &luid temperature T ∞ =77 elocity 6!I mDs

    Total "en*th " 6 m9idth 9 1 m

    Surface temperature T ( ?77

    To fin'

    1! "ocal heat transfer coefficient at " 1 m6! #vera*e heat transfer coefficient at " 6 m=! Heat transfer

    Solution

    Case ?i@ "ocal heat transfer coefficient at " 1m

    wf

    f

    T T6ilm temperature T

    2

    !++ ++ #+ 52T :: C

    ∞+=

    += == °

    '$ 2

    '

    8roperties of air at :: C *+ C

    = ) 5./m

    = 2)"+@ )+ m / s8r = +"$@2

    5 = +"!: )+ %/m5

    %e 4now(-

    1eynolds number 1e =v

    ρ

    ν

    ° ≈ °

    ×

    ×

    $

    #

    #

    2"# )

    2)"+@ )+1e ))*# @"!# # )+

    Since 1e # )+ ,flow is laminar"

    −×= ×

    = < ××

    &or flat plate) laminar flo()

    "ocal /usselt num'er / x 7!==6 @,eA7!I @+rA7!===

    87

  • 8/9/2019 Ppt Aero 6sem HT

    88/232

    7!==6 @11;I= !IA7!I @7!< 6A7!===

    / x 171!1;

    9e kno()"ocal nusselt num'er

    h -9(

    5=

    171!1; h )

    +"!: )+ −××

    hx =!7;=6 9Dm 6

    ⇒ "ocal heat transfer coefficient h x =!7; 9Dm 6

    Case ?ii@ #vera*e heat transfer coefficient at " 6m

    ,eynolds num'er ,e (-v

    $

    #

    #

    2"# 21e

    2)"+@ )+1e 2 :+:@")* # )+

    Since 1e # )+ ,flow is laminar"

    −×= ×

    = ××

    &or flat plate) laminar flo()

    / x 7!==6 @,eA7!I @+rA7!===

    7!==6 @6=K7K !1;A7!I @7!< 6A7!=== / x 1?=

    h -%e 4now that, 9(

    5h 2

    )! =+"!: )+ −

    =

    ×⇒ ×

    "ocal heat transfer coefficient h x 6!1K 9Dm 6 9e kno( that)

    #vera*e heat transfer coefficient h 6 × hxh 6 × 6!1Kh ?!=I 9Dm 6

    #vera*e heat transfer coefficient h ?!=I 9Dm 6

    Case ?iii@ Heat transfer h # @T ( . T ∞A ?!=I × 6 × 1 @?77 – =77A

    [ ]- = 2mK %= )mQ ;K7 9!

    112 %or a particular engine> the un'ersi'e of the cran case can +e i'ealiIe' as a flat plat

    88

  • 8/9/2019 Ppt Aero 6sem HT

    89/232

  • 8/9/2019 Ppt Aero 6sem HT

    90/232

    / x 1I6?!<

    9e kno( that) h -9(5=

    2

    h +"*)#2!"$ 0 - = +"*m

    2*"2$ )+h # "*# %/m 5

    −×= ×

    =

    Q

    "ocal heat transfer coefficient h x I=!;I 9Dm 6 &or tur'ulent flo() flat plate

    #vera*e heat transfer coefficient h 1!6? h x

    h 1!6? × I=!;Ih %ormula use' for %lo9 over cylin'ers an' spheres

    1! &ilm temperature %f T T

    T2

    ∞+= 9here T ∞ . &luid temperature °C

    T ( – +late surface temperature °C

    6! ,eynolds num'er(G

    9(v

    = 9here – elocity) mDs

    - . -iameter) m ν . inematic viscosity) m 6Ds

    =! /usselt num'er / C @,eAm

    @+rA7!===

    ?! /usselt num'er / hG5

    I! Heat transfer h × # × @T( . T ∞A9here # G-π

    %or sphere

    /usselt num'er / 7!=K @,eA 7!<

    Heat transfer h # @T ( . T ∞A

    90

  • 8/9/2019 Ppt Aero 6sem HT

    91/232

    9here # ? πr 6

    1 2 Air at 1 °C> != mBh flo9s over a cylin'er of 5== mm 'iameter an' 1 == mm height9ith surface temperature of 5 °C2 Calculate the heat loss2

    iven &luid temperature T ∞ 1I °C elocity =7 mDh

    + )+ m

    $++ s( *" m/s

    ×=

    =

    -iameter - ?77 mm 7!? m"en*th " 1I77 mm 1!I m+late surface temperature T ( ?I °C

    To fin' Heat loss!Solution 9e kno(

    &ilm temperature wf T T

    T2

    ∞+=!# )#

    2+=

    f T + C= °

    +roperties of air at =7 °C : L&rom HMT data 'ook) +a*e /o!66-ensity ρ 1!1

    $

    *" +"!)$ )+ −

    ×= ×#

    G1e 2"+* )+= ×

    9e kno(

    /usselt /um'er /u C @,eA m @+rA7!===

    L&rom HMT data 'ook) +a*e /o!17I

    91

  • 8/9/2019 Ppt Aero 6sem HT

    92/232

    ,e - value is 6!7; × 17 I ) so C value is 7!76

  • 8/9/2019 Ppt Aero 6sem HT

    93/232

    f

    '$ 2

    '

    ) + +

    2

    T *+ C8roperties of air at *+ C

    = ) 5./m

    = 2)"+@ )+ m / s8r = +"$@2

    5 = +"!: )+ %/m5%e 4now

    (G1eynolds number 1e =

    ρ

    ν

    ν

    +=

    = °°

    ×

    ×

    +"2 +"+:+$$ "*2

    2)"+@ )+1e $$ "*2

    −×= =×

    =9e kno(

    /usselt /um'er /u 7!=K @,eA 7!<

    7!=K @

  • 8/9/2019 Ppt Aero 6sem HT

    94/232

    152 Air at 5= °C flo9s over a tu+e 9ith a velocity of != mBs2 The tu+e surface temperatureis 1 = °C2 Calculate the heat transfer for the follo9ing cases2

    12 Tu+e coul' +e s

  • 8/9/2019 Ppt Aero 6sem HT

    95/232

    2

    h +"+$): "

    +"!: )+

    Heat transfer coefficient h = ** %/m 5

    −×= ×

    Case ?ii@

    Tu'e diameter -

  • 8/9/2019 Ppt Aero 6sem HT

    96/232

    1 2 n a surface con'enser> 9ater flo9s through staggere' tu+es 9hile the air is passe'

    in cross flo9 over the tu+es2 The temperature an' velocity of air are != °C an' ; mBsrespectively2 The longitu'inal an' transverse pitches are mm an' = mmrespectively2 The tu+e outsi'e 'iameter is 1; mm an' tu+e surface temperature is (= °C2Calculate the heat transfer coefficient2

    iven &luid temperature T ∞ =7°C elocity ; mDs

    "on*itudinal pitch) S p 66mm 7!766 mTransverse pitch) S n 67mm 7!767 m-iameter - 1;mm 7!71; mTu'e surface temperature T ( 7°C

    Solutionw

    f

    f

    T T6ilm temperature T

    2@+ +

    2

    T $+ C

    ∞−=

    +=

    = °

    '$ 2

    '

    8roperties of air at $+ C

    = )"+$+ 5./m

    = )*"@: )+ m / s8r +"$@$

    5 = 2*"@$ )+ % / m5

    ρ

    ν

    °

    ×=

    ×

    9e kno(

    Maximum velocity max n

    n

    S(

    S G× −

    ma

    ma

    +"+2+ ( *

    +"+2+ +"+)*

    ( = *+ m/s

    ⇒ = × −

    9e kno(

    96

  • 8/9/2019 Ppt Aero 6sem HT

    97/232

    ma

    $

    !

    n

    n

    p

    p

    ( G1eynolds 9umber 1e =

    *+ +"+)* )*"@: )+

    1e :"# )+S +"+2+

    )"))G +"+)*S

    )"))GS +"+22

    )"22G +"+)*

    S )"22G

    ν

    ×

    ×=×

    = ×

    = =

    =

    = =

    =

    pnSS

    )"))" )"22,G G

    = = correspondin* C) n values are 7!I1; and 7!II< respectively!

    L&rom HMT data 'ook) +a*e /o!11?C 7!I1;n 7!II<

    9e kno()

    /usselt /um'er /u 1!1= @+rA 7!===LC @,eA n

    L&rom HMT data 'ook) +a*e /o!11?

    +" ! +"##$ 9u = )") +"$@$3 0+"#)* :"# )+ 3 9u = 2$$"⇒ × × × ×

    9e kno(

    /usselt /um'erhG

    9u5

    =

    'h +"+)* 2$$" =

    2*"@$ )+×⇒ ×

    Heat transfer coefficient h ?6;!< 9Dm 6 !%ormulae use' for flo9 through Cylin'ers ? nternal flo9@

    1! Bulk mean temperature

    mi mom

    T TT

    2+=

    Tmi %nlet temperature °C)9here

    Tmo Outlet temperature °C!

    97

  • 8/9/2019 Ppt Aero 6sem HT

    98/232

    6! ,eynolds /um'er(G

    1eν

    =

    %f ,eynolds num'er value is less than 6=77) flo( is laminar! %f ,eynolds num'er values is*reater than 6=77) flo( is tur'ulent!

    =! "aminar &lo(: /usselt /um'er / – =!

  • 8/9/2019 Ppt Aero 6sem HT

    99/232

    +

    i

    %here G &uter diameter

    G ' Inner diameter

    K! Heat transfer

    h # @T ( – T mA (here # π × - × " @orA m C p @Tmo – T miA

    9here T ( – Tu'e (all temperature °C) Tm – Mean temperature °C! Tmi – %nlet temperature °C Tmo – Outlet temperature °C!

    ;! Mass flo( ratem . ρ × # × *Ds

    9here ρ . -ensity) *Dm =

    # – #rea) 2 2G , m!π

    – elocity) mDs

    162 3hen =26 /g of 9ater per minute is passe' through a tu+e of cm 'iameter> it isfoun' to +e heate' from = °C to 6= °C2 The heating is achieve' +y con'ensing steam onthe surface of the tu+e an' su+se

  • 8/9/2019 Ppt Aero 6sem HT

    100/232

    m

    '$ 2

    '

    8

    2

    2+ $+

    2

    T !+ C8roperties of water at !+ C

    = @@# 5./m

    = +"$#: )+ m / s

    8r = !" !+

    5 = $2* )+ %/m5C !"):* 5 /5.5 = !):* /5.5

    7ass flow rate m = A (

    m ( = A

    +"+) =

    @@# +"+23!

    >elocit

    ρ

    ν

    ρ

    ρ

    π

    +=

    = °°

    ×

    ×=

    ×

    y ( = +"+ ) m/s"et us first determine the type of flo(

    (G1e

    ν =

    $+"+ ) +"+21e +"$#: )+ 1e @! "$Since 1e 2 ++, flow is laminar

    −×⇒ = ×=

    &or laminar flo()

    /usselt num'er / =!

  • 8/9/2019 Ppt Aero 6sem HT

    101/232

    w m

    %e 4now that Q = h A= h G - T T 3

    = )$:)"2 =))!"@ +"+2 - @+'!+3- = !"$2m

    π

    π

    ∆Τ× × × × −

    × × × ×

    1:2 3ater at = °C enters = mm 'iameter an' 5 m long tu+e 9ith a velocity of =2; mBs2The tu+e 9all is maintaine' at a constant temperature of (= °C2 Determine the heattransfer coefficient an' the total amount of heat transferre' if e)ist 9ater temperatureis := °C2

    iven

    %nner temperature of (ater T mi I7 °C-iameter - I7mm 7!7I m"en*th " ? m

    elocity 7!; mDsTotal (all temperature T ( 7°CExit temperature of (ater T mo K7°C

    To fin'

    1! Heat transfer coefficient @hA6! Heat transfer @ A

    Solution

    Bulk mean temperaturemi mo

    m

    T TT 2

    +=

    m

    '$ 2

    '

    #+ :+2

    T $+ C

    8roperties of water at $+ C

    = @*# 5./m

    = +"!:* )+ m / s8r "+2+

    5 = $#)" )+ %/m5

    ρ

    ν

    +=

    = °°

    ×=

    ×

    101

  • 8/9/2019 Ppt Aero 6sem HT

    102/232

    "et us first determine the type of flo(:

    '$

    (G1e

    +"* +"+# =

    +"!:* )+

    ν =

    ××

    !1e *" $ )+Since 1e L 2 ++, flow is turbulent

    = ×

    !

    - !*+

    G +"+#-

    *+ L $+

    G1e = *" $ )+ )+,+++8r "+2+ +"$ 8r )$+

    = =

    =

    × >= ⇒

    -G

    ratio is *reater than

  • 8/9/2019 Ppt Aero 6sem HT

    103/232

    #vera*e temperature T m ?7 °C elocity 7!

  • 8/9/2019 Ppt Aero 6sem HT

    104/232

    elocity =I mDs %nner diameter - i ? cm 7!7?m

    Outer diameter - o < cm 7!7

  • 8/9/2019 Ppt Aero 6sem HT

    105/232

    /u 7!76= @,eA 7!; @+rAn

    This is heatin* process so) n 7!?+"* +"!

    e

    2

    9u = +"+2 ! :#+3 +":+)3 9u = )+2"@

    hG%e 4now 9u =

    5h +"+2

    )+2"@2$":# )+

    h = ) :": %/m 5"

    ⇒ × ×

    ×= ×⇒

    =2 Air at != °C> 6 mBs flo9s over a rectangular section of siIe !== × ;== mm2 Calculatethe heat lea age per meter length per unit temperature 'ifference2

    iven #ir temperature T m =7°C

    elocity < mDs #rea # =77 × ;77 mm 6

    # 7!6? m 6

    To fin'1! Heat leaka*e per metre len*th per unit temperature difference!

    Solution

    '! 2

    '

    8roperties of air at + C

    = )")$# 5./m

    = )$ )+ m / s

    8r = +":+)

    5 = 2$":# )+ % / m5

    ρ

    ν

    °

    ×

    ×

    E$uivalent diameter for =77 × ;77 mm 6 cross section is *iven 'y

    e

    e

    !A ! +" +"*3G

    8 2 +" +"*3%here 8 ' 8erimeter = 2 - %3

    G +"! $ m

    × ×= = +

    ⇒ =

    9e kno(

    105

  • 8/9/2019 Ppt Aero 6sem HT

    106/232

    e

    $

    !

    (G1eynolds 9umber 1e =

    $ +"! $ )$ )+

    1e = )$" )+

    ν

    −×= ××

    Since ,e 6=77) flo( is tur'ulent!

    &or tur'ulent flo( *eneral e$uation is @,e 17777A /u 7!76= @,eA 7!; @+rAn

    #ssumin* the pipe (all temperature to 'e hi*her than a temperature! So heatin* process ⇒ n 7!?

    ! +"* +"! 9u = +"+2 )$" )+ 3 +":+)39u 2@!"@$⇒ ×

    =9e kno(

    e

    '

    hG9usselt 9umber 9u =

    5h +"! $

    2@!"@$ =2$":# )+

    ×⇒ ×Heat transfer coefficient ⇒ h 1;!7 9Dm 6 Heat leaka*e per unit per len*th per unit temperature difference

    h + [ ])*"+@ 2 +" +"*× ×

    = !K 9

    12 Air at !!!/> 12 +ar pressure> flo9 through 1 cm 'iameter tu+e2 The surfacetemperature of the tu+e is maintaine' at 5== °/ an' mass flo9 rate is : gBhr2Calculate the heat transfer rate for 12 m length of the tu+e2

    iven #ir temperature T m ===

  • 8/9/2019 Ppt Aero 6sem HT

    107/232

    Solution

    Since the pressure is not much a'ove atmospheric) physical properties of air may 'e taken atatmospheric condition

    '$ 2

    '

    8roperties of air at $+ C

    = )"+$+ 5./m

    = )*"@: )+ m / s8r = +"$@$

    5 = 2*"@$ )+ %/m5(G

    1eynolds number 1e =

    ρ

    ν

    ν

    °

    ×

    ×

    9e kno(

    7ass flow rate m p ( ∆2

    2

    '$

    +"+2+ = )"+$+ G (!

    +"+2+ = )"+$+ +")23 (!

    ( = )"$$* m/s

    (G)3 1e =

    )"$$* +")2

    )*"@: )+1e = )+##)"

    π

    π

    ν

    × × ×

    ⇒ × × ×

    ×= ×

    Since ,e 6=77) so flo( is tur'ulent&or tur'ulent flo() *eneral e$uation is @,e 17777A

    +"* +"!9u +"+2 1e3 +"$@$3= × × /u =6!

    '

    2

    w m

    w m

    hG%e 4now 9u =5

    h +")2 2"@ =

    2*"@$ )+ h = :"@! %/m 5

    Heat transfer rate Q = h A T T 3

    h G -3 T T 3

    :"@! +")2 )"#3 )2: $+3Q ++"*2 %

    π π

    ×⇒

    ×⇒

    −= × × × × −= × × × × −=

    2 = /gBhr of air are coole' from 1== °C to != °C +y flo9ing through a !2 cm inner

    107

  • 8/9/2019 Ppt Aero 6sem HT

    108/232

    'iameter pipe coil +ent in to a heli) of =26 m 'iameter2 Calculate the value of air si'eheat transfer coefficient if the properties of air at 6 °C are

    / =2= (; 3Bm/ µ =2==! /gBhr 0 m*r =2:ρ 12=55 /gBm !

    iven Mass flo( rate in 67I k*Dhr 2+#

    5./ s in = +"+#$ 5./s$++

    =

    %nlet temperature of air T mi 177 °COutlet temperature of air T mo =7°C-iameter - =!I cm 7!7=I m

    Mean temperature mi momT T

    T $# C2+= = °

    To fin' Heat transfer coefficient @hA

    Solution

    ,eynolds /um'er ,e (G

    ν inematic viscosity

    µ ν ρ

    =

    : 2

    +"++ 5. / s m$++

    )"+!! 5./m

    v :"@* )+ m / s7ass flow rate in = A ( ρ

    = ×

    2

    +"+#$ )"+!! G (!π

    = × × ×2+"+#$ )"+!! +"+ #3 (

    !π = × × ×

    ':

    $

    ( = ##": m/s(G

    )3 1e =

    ##": +"+ #=

    :"@* )+

    1e = 2"!! )+

    ν

    ××

    ×

    108

  • 8/9/2019 Ppt Aero 6sem HT

    109/232

    Since ,e 6=77) flo( is tur'ulent&or tur'ulent flo() *eneral e$uation is @,e 17777A

    +"* +"

    $ +"* +"

    9u +"+2 1e3 8r3

    This is coolin. process, so n = +"

    9u = +"+2 2"!! )+ 3 +":39u 2$$)":

    = × ×

    ⇒ × × ×=

    9e kno( that)hG

    9u5

    =h +"+ #

    2$$)":

    +"+2@*

    ×=

    Heat transfer coefficient h 66!2 n a long annulus ?!21 cm D an' cm .D@ the air is heate' +y maintaining thetemperature of the outer surface of inner tu+e at = °C2 The air enters at 16 °C an'leaves at ! °C2 ts flo9 rate is != mBs2 Estimate the heat transfer coefficient +et9een airan' the inner tu+e2

    iven %nner diameter - i =!16I cm 7!7=16I m Outer diameter - o I cm 7!7I m

    Tu'e (all temperature T ( I7 °C%nner temperature of air T mi 1

  • 8/9/2019 Ppt Aero 6sem HT

    110/232

    Hydraulic or e$uivalent diameter

    [ ]( ) ( )

    2 2i

    ho i

    o i o i

    o i

    o i

    ! G G!A !G 8 G G

    G G G GG G 3

    G G

    π

    π

    × − = = +

    + − −= += − 7!7I – 7!7=16I

    - h 7!71;KI mh

    $


Recommended