+ All Categories
Home > Documents > Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej...

Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej...

Date post: 16-Jan-2016
Category:
Upload: randolph-martin
View: 217 times
Download: 0 times
Share this document with a friend
28
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín Černoch, Miroslav Gavenda, Eva Kachlíková, Lucie Bartůšková Palacký University & Institute of Physics of AS CR
Transcript
Page 1: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Quantum-optics experiments in Olomouc

Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka

Radim Filip, Jaromír Fiurášek, Miloslav Dušek

Antonín Černoch, Miroslav Gavenda, Eva Kachlíková, Lucie Bartůšková

Palacký University & Institute of Physics of AS CR

Page 2: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Quantum identification system M. Dušek et al, Phys. Rev. A 60, 149 (1999).

830 nm100kHz

Visibility >99.5%Losses < 4.5dB

Rate: 4.3 kbits/sError rate: 0.3%

<1ph.pp0.5 km

• QIS combines classical identification procedure and quantum key distribution.• Dim laser pulses as a carrier of information.

Page 3: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Experiments with entangled photons produced by down-conversion in non-linear crystal pumped by Kr+laser

M. Hendrych et al, Simple optical measurement of the overlap and fidelity of quantum states, Phys. Lett. A 310, 95 (2003).

J. Soubusta et al, Experimental verification of energy correlations in entangled photon pairs, Phys. Lett. A 319, 251 (2003).

J. Soubusta et al, Experimental realization of a programmable quantum-state discriminator and a phase-covariant quantum multimeter, Phys. Rev. A 69, 052321 (2004).

R. Filip et al, How quantum correlations enhance prediction of complementary measurements, Phys. Rev. Lett. 93, 180404 (2004).

Page 4: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Simple optical measurement of the overlap and fidelity of quantum states

Tr Tr

Bipartite system: 1

Qubits:

1

2

A B A B

A B A B

V

V

V

H V V H

Page 5: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Simple optical measurement of the overlap and fidelity of quantum states

2H

YYXXVVp p 2

1

VHA 2

1

Page 6: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Experimental tests of energy and time quantum correlations in photon pairs

01 2

Entangled state of two photons

produced by a non-linear crystal:

= d ( )

Page 7: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Experimental tests of energy and time quantum correlations in photon pairs

Page 8: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

2nd order interference.Reduction of the spectrum induces prolongation of the coherence length.Geometric filtering (FWHM=5.3 nm). Narrow band interference filter (FWHM of 1.8 nm). Fabry-Perot rezonator.

4th order interference.Hong-Ou-Mandel interference dip

Page 9: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Programmable quantum-state discriminator

"Data":

"Program":

1 - Our device can distinguish

21

- Our device cannot distinguish2

d d d

p p p

a H b V

a H b V

HV VH

HH VV

Page 10: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Phase-covariant quantum multimeter

+

Basis in the subspace of equatorial qubits:

Program state determines basis

iH e V

Quantum multimeters – measurement basis determined by a quantum state of a “program register”

Phase-covariant multimeters – success probability independent of

Page 11: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Programmable discriminator of unknown non-orthogonal polarization states of photon

Phase-covariant quantum multimeter

Page 12: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

0

24

ddd VbHa

Programmable discriminatorParameters of the polarization states: ellipticity tan and

orientation

Page 13: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Phase-covariant quantum multimeter

Page 14: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

How quantum correlations enhance prediction of complementary measurements

The measurement on the one of two correlated particles give us the power of prediction of the measurement results on the other one. Of course, one can never predict exactly the results of two complementary measurements at once. However, knowing what kind of measurement we want to predict on signal particle, we can choose the optimal measurement on the meter particle. But there is still a fundamental limitation given by the sort and amount of correlations between the particles. Both of these kinds of constraints are quantitatively expressed by our inequality. The limitation stemming from mutual correlation of particles manifests itself by the maximal Bell factor appearing in the inequality. We have proved this inequality theoretically as well as tested it experimentally

1 2

2

ma

1 2

x

1 2max,

2

2 2

2 ' '

'( ) ( ) 1

ˆ

( ) ( )2

ˆ max Tr

M S M

M S M S

S

n n

B

n nB

K K

K K

Page 15: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

How quantum correlations enhance prediction of complementary measurementsPolarization two-photon mixed states:Werner states with the mixing parameter p.

41 p

p

pB 22max

Theoretical knowledge excess:

)2sin('K

)cos(2K

p

p

TheoreticalBell factor:

Page 16: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
Page 17: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

p 0.82 0.82BBmaxmax=2.36=2.36

2222 max)'('K)(K B 1)('K)(K 22

p 0.45 0.45BBmaxmax=1.32=1.32

Page 18: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Optical implementation of the encoding of two qubits into a single qutrit

• A qutrit in a pure state is specified by four real numbers. The same number of parameters is necessary to specify two qubits in a pure product state.

• Encoding transformation:

• Any of the two encoded qubit states can be error-free restored but not both of them simultaneously.

• Decoding projectors:

1 2

1 2

1 2

0 0 0

0 1 1

1 1 2

qubits qutrit

1 1

2 2

1 1 2 2 , 0 0

0 0 1 1 , 2 2

Page 19: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

• States of qubits:

• State of qutrit:

• Additional damping factor:

1/ 4, 3 / 4R T

1 2 1 2 1 21 2 4 1 2 4 1 2 4001 ( ) 010 100

f f f f f f f f fT R T R

1 1 2 21 2 1 2 3 4 3 401 10 01 10

f f f f f f f f

4 1/ 3

Page 20: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Observed fidelities of reconstructed qubit states forvarious input states.

Page 21: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
Page 22: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Optical implementation of the optimal phase-covariant quantum cloning machine

• Exact copying of unknown quantum states is forbidden by the linearity of quantum mechanics.

•Approximate cloning machines are possible and many implementations for qubits, qudits and continuous variables were recently designed.

• If the qubit states lie exclusively on the equator of the Bloch sphere, then the optimal phase-covariant cloner exhibits better cloning fidelity than the universal cloning machine. ,

2 2

Fidelity:

fixed (equatorial qubits: = /2)

, 1, 2

cos sin

j in j out in

iin

F j

V e H

Page 23: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Optical implementation of the optimal phase-covariant quantum cloning machine

iV e HV

8020

2080

HH

VV

TR

TR

succ1

385%

p

F

Page 24: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
Page 25: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

[ / 2]succP 1 2, [ / 2]F F

1 2, [ 0]F F

Page 26: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Another approach to optical implementation of phase-covariant clonning

fiber

Polarization-dependent loses

Page 27: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Correction of noise and distorsions of quantum signals sent through imperfect

Page 28: Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.

Other cooperating groups

• Experimental multi-photon-resolving detector using a single avalanche photodiode

• Study of spatial correlations and photon statistics in twin beams generated by down conversion pumped by a pulsed laser

The End


Recommended