Patofyziologie respirační insuficience

Post on 21-Mar-2016

101 views 4 download

description

Patofyziologie respirační insuficience. Michaela Diblíčková. Dýchací systém. Hlavní funkce: Výměna dýchacích plynů (O 2 a CO 2 ) mezi okolím a organismem Regulace ABR Zástava dýchání – přebytek CO 2 v organismu ( CO 2 + H 2 O = H 2 CO 3 ) – ACIDOSA - PowerPoint PPT Presentation

transcript

Patofyziologie respirační insuficience

Michaela Diblíčková

Dýchací systém

Hlavní funkce:- Výměna dýchacích plynů (O2 a CO2) mezi okolím a

organismem- Regulace ABRZástava dýchání – přebytek CO2 v organismu ( CO2 + H2O = H2CO3 ) – ACIDOSA - nedostatek O 2 = akutní nedostatek energie ( nemožnost udržovat integritu buněk) – krátkodobě anaerobní glykolýza ( laktát)

Dýchací systém

Dodávka kyslíku do tkání: - závisí na srdečním výdeji množství hemoglobinu saturaci hemoglobinu O2

PaO2

DO = CO x ( Hb x SpO2 x 1.39) + ( PaO2 x 0.003)

Dýchací systém

Faktory ovlivňující dýchání: 1) zevní vlivy : složení vzduchu atmosférický tlak2) vnitřní vlivy : nervový systém – regulace respirace regulace KVS regulace MTB volní kontrola ( řeč, apnoe..)

Dýchací systém

plíce – ventilace distribuce ventilace difuze perfuze srdce a cévy – minutový srdeční výdej krevní tlak

Dýchací systém

krev – transport ABR složení krve tkáně – buněčné dýchání MTB perfuze

Dýchací systémRozdělení:HCD- dutina nosní nosohltanDCD – hrtan trachea bronchy- hlavní , lalokové , segmentální ( 10) subsegmentální bronchioly – terminální, respiratorní ( od 17. rozdělení) alveolární dukty ( 20. – 22. větvení )

Dýchací systém

alveolární váčky ( 23. rozdělení ) alveoly plicní tkáňPlicní tkáň ventilovaná jedním respiračním bronchiolem 1.řádu = primární plicní lalůčekPlicní sklípky se vyklenují již ze stěny respiračních bronchiolů

Základní mechanismy respirace

Ventilace – výměna vzduchu mezi okolím a plícemi - objem plynu vdechnutý / vydechnutý za časovou jednotku - rozdíly tlaků mezi atmosférou a alveoly ( dýchací svaly)

Ventilace

Ventilace Tlakové změny - dány mechanickými vlastnostmi plic a hrudníku- především poddajností plic odporem v dýchacích cestách

Regulace ventilace

Regulace ventilace:PaCO2 – chemoreceptory mozkového kmene difuze přes HEB do likvoru ↓pH – stimulace dechového centra PaCO2 vyšší než 40mmHg ( 1 mmHg = 7,5 kPa )Citlivost snižuje : spánek celková anestesie dlouhodobě ↑ PaCO2 ( CHOPN)

Regulace ventilace

Regulace ventilace:Citlivost centrálních chemoreceptorů zvyšuje: hypoxie noradrenalin progesteron acidosa salicyláty

Regulace ventilace

Regulace ventilace:PaO2 - periferní receptory glomus caroticum- n . glossopharyngeus glomus aorticum - n. vagus jen při poklesu PaO2 pod 60 mmHgSignály jdou do center v prodloužené míše (pneumotaktické a apneustické )

Regulace ventilace

Centra v prodloužené míše jsou ovlivňována - nadřazenými centry z CNS ( pons , thalamus , kůra ) – autonomní a volní modulace - ascendentní aktivační retikulární formací ( nespecifická aktivace )- Centrálními a periferními chemoreceptory

Regulace ventilace

Centra v prodloužené míše jsou ovlivňována - míchou – spinální integrace a lokální koordinace- mechanoreceptory ( obranné reflexy ) přenáší signály přes n. vagus

Regulace ventilace

Přerušení modulace z vyšších center CNS- pons , thalamus – apneustické dýchání inspirace s krátkými exspiračními pauzami- ARAS – snížení aktivity respiračního centra snížení citlivosti centrálních chemoreceptorů ( CA , bezvědomí )

Regulace ventilace

Adaptace centrálních chemoreceptorů- při chronické hyperkapnii- ventilace je tak řízena pomocí periferních

chemoreceptorů ( n. vagus , n. glossopharyngeus )→Problém O2 terapie u pacientů s CHOPN je ztráta spontánní ventilace při zvýšeném přívodu O2 ( do 4 l/min.)

Patologické typy dýchání

Kussmaulovo- acidotické dýchání - hyperventilace při ketoacidose ( DM )- fyziologická kompenzace Apneustické dýchání- trvalá inspirace s krátkými exspiračními pauzami ( porucha centra v pontu )

Patologická typy dýchání

Cheyene – Stokesovo- periodické střídání zvýšené a snížené

respirační aktivity- stavy s nízkým minutovým srdečním výdejem→ pomalý průtok krve chemoreceptory

Minutová ventilace

Minutová ventilace

MV = VT x f ( ml/min.) VT = 5-8 ml/ kg100ml/kg/minmenší děti 200 ml/ kg /minnovorozenci 300 ml / kg / min

Mrtvý prostor

Mrtvý prostor ( VD)- nepodílí se na výměně dýchacích plynů- anatomický - do úrovně respiračních

bronchiolů VT = VD + VA

cca 150 ml u dospělého 2,2ml/kg

Mrtvý prostor

- funkční tzv. alveolární mrtvý prostor objem alveolárního vzduchu , kde neprobíhá dostatečná výměna plynů př. fibróza , edém , porucha perfuze- artificiální umělé prodloužení DC ( dýchací hadice , vzduchovody …)

Základní mechanismy respirace

Výpočet velikosti mrtvého prostoru : PaCO2 – PETCO2 VD = VT -------------------------- PaCO2

PaCO2 – tenze CO2 v arteriální krviPETCO2 – koncentrace CO2 ve vydechovaném vzduchuMuži 33 – 45 % VT

Ženy 29 – 39 % VT

Alveolární ventilace

- klíčová pro výměnu dýchacích plynů - poměr mezi alveolární ventilací a ventilací

mrtvého prostoru není konstantní – záleží na dechovém objemu – čím je dechový objem nižší, tím nižší je alveolární ventilace

- Z hodnoty minutové ventilace tedy nelze jednoznačně usoudit jaká je alveolární ventilace

Alveolární ventilace

- za fyziologických okolností udržována tak, aby byl adekvátně odváděn CO2 ze tkání aniž by se zvyšovala jeho koncentrace v arteriální krvi – tím je za fyziologických podmínek zajištěn dostatečný přívod O2

- musí zcela pokrýt produkci CO2 ( rychlost MTB)- rychlost eliminace CO2 je dána alveolární

ventilací a koncentrací CO2 v alveolárním vzduchu

Alveolární ventilace

Vzestup produkce CO2- Vzestup alveolární ventilace ( fyziologické) nebo nárůst koncentrace CO2 v alveolárním vzduchu , a tím i v arteriální krvi – respirační acidóza při selhání regulačních mechanismů

Alveolární ventilace

- přímo úměrná produkci CO2- nepřímo úměrná koncentraci CO2 v alveolech

Rovnice alveolární ventilace :

VA = VCO2 met x K / PACO2

Energetické nároky dýchání

- pro organismus je velmi důležité jak velkou při dýchání vykonává práci , její neúměrný nárůst vede k únavě dýchacích svalů – možná příčina selhání respiračních funkcí W = p x V ( J ) V – dechový objem

p – síla ( tlak ) potřebná pro nádech

Energetické nároky dýchání

Fyziologicky zvýšená práce : - hyperventilace při tělesné námaze , úzkosti …

Patologicky zvýšená práce : plicní onemocnění - astma bronchiale chronická bronchitis plicní fibrosa edém plic emfyzém

Patologicky zvýšená práce při dýchání

Zvýšený odpor v DC( obstrukce DCD)- astma bronchiale , chronická bronchitisMenší poddajnost plic ( snížená elasticita )- fibrosa , restrikční choroby , edém , nedostatek surfaktantu , stagnace krve

Patologicky zvýšená práce při dýchání

Snížení transpulmonálního tlaku- snížení tlaku distendujícího bronchioly – obstrukce některých bronchiolů( zvýšení elasticity plic )- emfyzém

Surfaktant

fosfolipidy ( dipalmitát lecitinu) produkt pneumocytů II typu významně snižuje povrchové napětí při nádechu se od sebe molekuly oddalují, při výdechu se přibližují ( koncentrují ) – brání kolapsu zmenšujících se alveolů- tím přispívá k rovnoměrnému rozpětí , ventilaci a udržení V/Q poměru

Surfaktant

- snižuje sílu retrakce plic ( tím snižuje práci při nádechu)

Nezbytný pro udržení normální funkce plic DEFICIT: - snížení elasticity plic - nárůst dechové práce - nestabilita alveolů

Surfaktant

DEFICIT:- kolaps malých alveolů vede k nepoměru

ventilace a perfuze - dochází k filtraci tekutiny do alveolů ( edém ) a

k poruše difuze Výsledek = respirační selhání

Distribuce ventilace

rozdělení inspirovaného plynu , tak aby byly ventilovány všechny funkční alveoly- cílem je udržet ventilačně perfuzní poměr ze

strany bronchů- ovlivněna polohou těla

Distribuce ventilace

Distribuce v závislosti na poloze : vzpřímená poloha a poloha na zádech - pravá plíce je lépe ventilovaná ( 55 % )poloha na boku - lépe ventilovaná je spodní plíce( účinnější kontrakce bránice – schopnost plnit se větším objemem )

Distribuce ventilace

Distribuce v závislosti na poloze : horizontální poloha- bazální části plic jsou ventilovány lépe než

apikální

Ventilačně perfuzní poměr

Pro výměnu plynů je nutná rovnováha mezi přívodem vzduchu a průtokem krve plícemiNeventilované perfundované alveoly- Nedochází k arterializaci krve = NITROPLICNÍ ZKRAT - nedostatečná ventilace = vazokonstrikce v alveolu = HYPOXICKÁ VAZOKONSTRIKCE odklonění krevního proudu do lépe ventilovaných alveolů

Ventilačně perfuzní poměr

Ventilované neperfundované alveoly - nemožná výměna plynů = ALVEOLÁRNÍ MRTVÝ PROSTOR - nedostatečná perfuze alveolu vede k bronchokonstrikci – odklon ventilace do lépe perfundovaných oblastíRovnováha mezi ventilací a perfuzí je udržována především autoregulačními mechanismy

Ventilačně perfuzní poměr

Lze stanovit jako poměr minutové alveolární ventilace a minutového srdečního výdeje V / Q = VA /CONepoměr ventilace / perfuze je nejběžnější příčinou hypoxemie

PERFUZE

Plicní cirkulace je nízkotlaká ( 25/10 mmHg ) - kapilární tlak nepřevyšuje onkotický - ovlivněná: gravitací intrapulmonálním tlakem žilním návratem objemem plic

PERFUZE

↑ intrapulmonální tlak = tlak v dýchacích cestách - nárůst může utiskovat kapiláry ( omezení průtoku krve ) ↑ žilní tlak – stagnace krve v malém oběhu ( ↓průtok krve )

PERFUZE

Je nerovnoměrná - mezi pravou a levou plící ( lépe pravá ) - mezi plicními laloky- horizontálními rovinami plic ( přibývá bazálním

směrem, ale v nejníže uložených částech plic díky vysokému intersticiálnímu tlaku klesá – komprese kapilár )

Na boku je lépe perfundovaná spodní plíce

PERFUZE

Regulace průtoku - především autoregulační mechanismy: složení krve napětí cévní stěny mediátoryReakce na hypoxii a hyperkapnii – VAZOKONSTRIKCE

HYPOXICKÁ VAZOKONSTRIKCE

Hypoxie signalizuje nízkou oxygenaci krve ( nedostatečná ventilace / porucha difuze )→ vazokonstrikce dané kapiláry – odklonění krevního proudu do lépe zásobených oblastí

PERFUZE

Faktory ovlivňující tonus plicních cév:DILATACE : beta 1 adrenergní agonisté

acetylcholinKONSTRIKCE : alfa adrenergní agonisté hypoxie hyperkapnie sympatické nervy

– výměna dýchacích plynů mezi alveoly a krví - díky koncentračním a tlakovým gradientům plynů - neustálá spotřeba kyslíku v mitochondriích = nízký parciální tlak ve tkáních - MTB – produkce CO2 = vysoký parciální tlak

DIFUZE

DIFUZE

probíhá přes alveokapilární membránu celková dráha difuze – alveolus alveokapilární membrána plazma membrána erytrocytu hemoglobin

Difuze

Závisí na – difuzní ploše koncentračním gradientu rozpustnosti ( konst ) teplotě ( konst ) délce difuzní dráhy velikosti molekul ( konst ) rychlosti průtoku krve

Difuze

přímo úměrná - koncentračnímu gradientu - ploše difuzenepřímo úměrná délce difuzní dráhy

Konstantní parametry jsou zahrnuty pod pojem DIFUZIVITA

DIFUZE

Rychlost průtoku krve plicními kapilárami - zrychlení zkracuje dobu kontaktu krve a alveolárního plynu - norma 0.8 sec. - zkrácení pod 0.2 sec. způsobí snížený přestup kyslíku ( hyperdynamická cirkulace za anemie )

DIFUZE

Ekvilibrace pro CO2 je rychlejší než pro O2

→ Porucha výměny plynů se projeví dříve jako hypoxie

Difuze

Faktory zhoršující difuzi : snížení difuzní plochy ( emfyzém ) snížení průtoku krve plícemi ( snížení perfuze..) plicní městnání ( prodloužení difuzní dráhy ) významný a hrubý nepoměr ventilace/ perfuze alveokapilární blok – ztluštění membrány ( intersticiální plicní edém, fibrosa , sarkoidosa , azbestoza )

Transport dýchacích plynů

Transport kyslíku 98 % vázaný na hemoglobin ( 1g Hb váže 1.34 ml O2 ) 2 % rozpuštěný v plazmě Faktory ovlivňující afinitu hemoglobinu k O2 : pH teplota p CO 2 2,3 DPG

Transport dýchacích plynů

Posun disociační křivky hemoglobinu doprava - snížení afinity : ↑ pCO2

↑ teplota ↓ pH 2,3 DPG – stabilizuje desaturovaný hemoglobin

Transport dýchacích plynů

Transport oxidu uhličitého90 % ve formě hydrogenuhličitanového iontu Reakce CO2 + H2O →H2CO3

HCO3→ H + HCO3

Katalyzováno KARBOANHYDRAZOU ( přítomná v erytrocytech )5 % vazba na hemoglobin5 % rozpuštěný v plazmě

Respirační insuficience

Dýchací ústrojí není schopno zajistit přiměřenou výměnu dýchacích plynů- funkční nedostatečnost dýchacího systému : nedostatečná nabídka kyslíku – selhání oxygenace ( hypoxie ) nedostatečný výdej oxidu uhličitého – selhání ventilace ( hyperkapnie )

Respirační insuficience

Vymezena hodnotami krevních plynů Fyziologické: PaO2 10 - 14 kPa (100 mmHg) PaCO2 4,5 – 5.9 kPa(40 ± 4 mmHg) 1 kPa = 7.5 mmHgKonstantní znak = ↓ PaO2( pod 10 kPa/ 60 mmHg) - provázeno snížením saturace hemoglobinu O2

- může se projevit jen při námaze = latentní RI

Respirační insuficience

parciální = typ I - hypoxická- často provázena snížením PaCO2 ( hypokapnií)globální = typ II - ke sníženému Pa O2 se přidává zvýšené Pa CO2 ( hypoxemie + hyperkapnie) 1. kompenzovaná – pH v normě (7,35 – 7,45) 2. dekompenzovaná – pokles pH (respirační acidosa)

Respirační insuficience

Obecné příčiny - plicní ( aspirace , edém , infekce , embolizace, cystická fibrosa , CHOPN ……. ) - mimoplicní - poruchy mechaniky a regulace ↓ svalová síla útlak dýchacích cest

Respirační insuficience

Dle rychlosti vzniku:AKUTNÍVzniká náhle – nejsou přítomny kompenzační mechanismyVede rychle k život ohrožující poruše oxygenace tkání a poruše eliminace oxidu uhličitého

Akutní respirační insuficience

Dýchací cesty a plíce– choroby hrtanu (akutní epiglotitida, subglotická laryngitida)– choroby průdušek (asthma bronchiale, akutní exacerbace

CHOPN)– choroby plicního parenchymu (pneumonie, ARDS, levostranná

srdeční nedostatečnost, exogenní alergická alveolitida)– choroby plicních cév (embolie plic)

Mimo dýchací ústrojí– neuromuskulární poruchy (akutní polyradikuloneuritida,

botulismus, meningitida, encefalitida, míšní léze a různé neinfekční příčiny)

Respirační insuficience

CHRONICKÁProvázena kompenzačními mechanismy–postupně se vyvíjí tolerance ke zvýšení PaCO2

- chemoreceptory adaptované na vysoké PaCO2, regulace při současně nízkém PaO2 přes periferní chemoreceptory – podání kyslíku může vést až k zástavě dýchání

Hypoxie

Nedostatek kyslíku ve tkáních ( organismu ) - nedostatek paliva pro aerobní glykolýzu nedostatek energie pro buněčné funkce - dočasná tvorba energie anaerobní cestou energeticky nevýhodné produkce laktátu ( acidosa )PaO2 pod 60 mmHg Stimulace periferních chemoreceptorů

Hyperkapnie

Vzniká , pokud je součet alveolární ventilace všech perfundovaných alveolů ( tzv. celková sumární alveolární ventilace ) neadekvátně nízká vzhledem k aktuální produkci CO2

← malá celková plicní ventilace ( HYPOVENTILACE )← zvětšení podílu ventilace mrtvého prostoru

( VA = VT – VD )

Hyperkapnie

Zvýšený Pa CO2 nad 40 mmHg / 6 kPaVede ke zvýšené hladině vodíkových protonů→stimulace centrálních chemoreceptorů → stimulace ventilace….Chronická hyperkapnie → snížení citlivosti centrálních chemoreceptorů….( Pickwickův syndrom )

Hyperkapnie

Zvýšená tenze CO2 je i v alveolárním vzduchu→Snižuje alveolární tenzi O2 ( zhoršuje hypoxii )Onemocnění, která vyvolávají hyperkapnii, vždy vyvolávají i hypoxii- rovnice alveolárních plynů:

PAO2 = piO2- ( PaCO2 / RQ ) + zanedbatelný zbytekpiO2 – parciální tlak kyslíku ve vdech. vzduchuPaCO2 – parciální tlak ox. uhličitého v arteriální krvi

RQ – respirační kvocient ( 0.8 )

Účinky hyperkapnie na organismus

- acidifikace vnitřního prostředí - tlumivý účinek na CNS ( včetně dechových center ) snížený mentální výkon , neklid somnolence , koma vazodilatace ( včetně CNS) → riziko rozvoje edému mozku

Hypokapnie

Často provází parciální respirační insuficienciDůsledek zvýšeného ventilačního úsilí - alveolární hyperventilace - volní hyperventilace ( mozková kůra) - stres , hysterická reakce ( podkorová centra)

Hypokapnie

- nadměrná stimulace dechových center - patologie CNS - MTB acidosa - otravy způsobující acidemii - stimulace chemoreceptorů nízkou hodnotou PaO2

Účinky hypokapnie na organismus

alkalóza - vede ke zvýšenému navazování vápníku na

plazmatické bílkoviny → snižuje stupeň ionizace kalcia → zvýšená neuromuskulární dráždivost až generalizované křeče

- vazokonstrikce mozkových cév → projevy nedostatečného zásobení mozku O2 ( točení hlavy….)

Mechanismy ↓ pAO2

- lokální /celková alveolární hypoventilace - poruchy poměru ventilace / perfuze - přítomnost pravo – levého zkratu - ztluštění alveokapilární membrány

Hypoventilace

- poškození dýchacích center CNS - porucha nervového / nervosvalového přenosu- onemocnění dýchacích svalů - omezená pohyblivost hrudníku- útlak plíce ( pneumothorax , fluidothorax…)- obstrukční onemocnění plic- restrikční onemocnění plic

Hypoventilace

Díky sigmoidálnímu zakřivení vazebné křivky pro kyslík – příjem O2 v plicích je v širokých mezích nezávislý na alveolárním parciálním tlaku→ mírný stupeň hypoventilace - saturace hemoglobinu se prakticky nemění( vazebná křivka je v ploché části )→ masivní hypoventilace – saturace hemoglobinu klesá ( strmá část křivky )

Hypoventilace

Funkční vztah mezi PaO2 a saturací hemoglobinu O2 v oblasti PaO2 mezi 13 – 10 kPa je plochý- saturace se při klesajícím PaO2 zpočátku snižuje velmi málo

Hypoventilace

Dochází i k poruše odvětrávání alveolů → zvýšení parciálního tlaku CO2 - HYPERKAPNIE

Obstrukční plicní onemocnění

Dýchací cesty kladou proudícímu vzduchu odpor = rezistence ( R )- určován průsvitem dýchacích cest – především

středních bronchů→ zúžení lumen = zvýšení odporu ( kontrakce svaloviny bronchů , hlen … )

Obstrukční plicní onemocnění

Nárůst dechového odporu - nárůst dechové práce → dyspnoe - porucha ventilace → hypoxie ( vazokonstrikce ) - exspirace vyžaduje přetlak → komprese cév ( zhoršení plicní hypertenze ) komprese bronchů ( ztížení exspirace ….)

Obstrukční plicní onemocnění

Hypoxie hypoventilovaných alveolů → hypoxická vazokonstrikce – vzestup odporu v malém oběhu→ plicní hypertenze → cor pulmonale

Obstrukční plicní onemocnění

Intratorakální vzestup rezistenceKomprese bronchů zvenčíKontrakce svaloviny bronchůZtluštění slizniceUcpání lumen hlenem←← Astma bronchiale Chronická bronchitis Cystická fibrosa

Obstrukční plicní onemocnění

Intratorakální vzestup rezistence Může být způsobena i sníženou retrakční silou plic = tzv. ochablá plíce - při zvýšené poddajnosti musí být pro exspiraci vyvinut přetlak , který komprimuje nitrohrudní dýchací cesty

Obstrukční plicní onemocnění

Intratorakální vzestup rezistence→→ omezena převážně exspirace – nadměrné rozpětí alveolárních duktů → centrilobulární emfyzém - snížená retrakční síla plic - střední dechové postavení je posunuto k inspiriu → soudkovitý hrudník

Obstrukční plicní onemocnění

Extratorakální zvýšení rezistence ochrnutí hlasových vazů edém glottis komprese trachey zvenčí - tumory struma tracheomalacie → obvykle postižena převážně inspirace ( inspirační stridor )

Restrikční plicní onemocnění

Ztráta plochy pro výměnu dýchacích plynů - anatomická : resekce plic karcinom ….- funkční : exsudace tekutiny do alveolů ( edém / zánět ) fibrosa deformity hrudníku pneumothorax

Restrikční plicní onemocnění

Fibrosa- vazivo vytlačuje intaktní plicní parenchym → zmenšení difuzní plochy prodloužení difuzní vzdálenosti brání normálnímu rozvinutí plic = omezuje alveolární ventilaci

Restrikční plicní onemocnění

Pneumotorax→ kolaps plíce vlání mediastina – ztěžuje ventilaci i v druhostranné plíci( při nádechu putuje mediastinum ke zdravé plíci a při výdechu se vrací opět do své pozice )

Restrikční plicní onemocnění

Tenzní pneumotorax ( př. prasklé alveoly – ventily ) - ventilový mechanismus propouští vzduch dovnitř pleurálního prostoru nikoliv však ven → postupný posun mediastina ke zdravé straně – útlak nepostižené plíce – omezení dýcháníNárůst nitrohrudního tlaku omezuje venózní návrat – celkové snížení srdečního výdeje

Restrikční plicní onemocnění

- akutní život ohrožující stav - může vzniknout spontánně → idiopatický jako následek plicních onemocnění - CHOPN - cystická fibrosa …

Restrikční plicní onemocnění

Důsledky restrikčních plicních onemocnění :- ↓ kompilace- ↓ vitální kapacita- ↓ funkční reziduální kapacita- ↓ difuzní kapacita – porucha difuze – hypoxemie

Plicní zkrat , shuntKrev protéká plícemi bez kontaktu s alveolárním vzduchemSložení krve pak odpovídá smíšené venózní krvi - PaO2 5,3 kPa a nižší - PaCo2 6,0 KPa a vyšší Perfundované ale nevzdušné části plic - atelektáza - plicní edém - plicní záněty - tumory a metastázy - pneumotorax

Poruchy alveokapilární membrány

Alveokapilární membrána- pneumocyty- bazální membrána- endotel kapilár- →→ difuze dýchacích plynů

Poruchy alveokapilární membrány

- Redukce účinné plochy pro difuzi plynů- Ztluštění membrány = prodloužení difuzní

vzdálenosti- Zvýšení propustnosti alveokapilární membrány

Poruchy difuze

Snížený poměr difuzní kapacity = tzv. transfer faktor a prokrvení plic resp. srdečního výdeje ( SV = TF x Vt ) D = K x F / d ( cca 230 ml/ min.x kPa )D – difuzní kapacita K – Kroghův difuzní koeficientF – difuzní plocha d – difuzní vzdálenost

- nedojde k vyrovnání parciálních tlaků kyslíku mezi vzduchem v alveolu a kapilární krví.

Poruchy difuze

Prodloužená difuzní vzdálenost- plicní edém- pneumonie- intersticiální plicní fibróza ( vazivo odtlačuje

alveoly od kapilár )Redukce difuzní plochy- ztráta alveolárních sept ( emfyzém)- kolaps alveolů ( atelektáza )

Poruchy difuze

Projeví se zejména při velkém srdečním výdeji- rychlý průtok krve plícemi → krátká doba

kontaktu krve s alveoly Důsledky poruchy difuze: snížená difuzní kapacita → pokles PAO2 → hypoxie → stimulace dechového centra – zvýšená ventilace → hypokapnie ( respirační alkalóza)Hyperventilace však hypoxii vzniklou díky poruše difuze ovlivňuje jen minimálně

Poruchy difuze

M = K x F ( PA – P krev) /dM- množství plynu difundující za časovou jednotku mezi alveoly a krvíK – Kroghův difuzní koeficient ( 20 x vyšší pro CO 2 )F – difuzní plochaPA – P krev = rozdíl parciálních tlaků mezi alveolárním vzduchem a krvíd – difuzní vzdálenost

Poruchy difuze

Aby difundovalo vždy stejné množství plynu , musí být gradient pro kyslík 20x vyšší než pro oxid uhličitý……Hypoxemie způsobená poruchou difuze může být kompenzována vdechováním vzduchu bohatého na kyslík ← zvýšený tlakový gradient v alveolárním vzduchu← zvýší se i obsah kyslíku fyzikálně rozpuštěného v krvi

Poruchy poměru ventilace / perfuze

Omezení perfuze : arteriální hypotenze konstrikce / uzávěr plicních cév ( embolie ) redukce plicních cév ( př. emfyzém )→→ zvětšení funkčního mrtvého prostoruVelký díl neperfundovaných alveolů se projevuje také jako snížená plocha pro difuzi plynů ( porucha difuze…. )

Poruchy poměru ventilace / perfuze

Poruchy distribuce ventilace : - nedostatečná ventilace perfundovaných alveolů → nedostatečná oxygenace protékající krve - nedostatečný odvod CO2

Př. obstrukční plicní onemocnění plicní fibróza atelektáza ( úplný uzávěr dýchacích cest ) ucpání bronchu tumorem→ funkční arteriovenózní zkrat - hypoxemie

Poruchy poměru ventilace / perfuze

Poruchy distribuce ventilace :Hyperkapnie většinou nevzniká ← snížený výdej CO2 v málo ventilovaných alveolech je kompenzován zvýšením výdeje ve ventilovaných alveolechÚplný uzávěr dýchacích cest – kolaps alveolů = ATELEKTÁZA - díky postupné resorpci alveolárního vzduchu

Řízení ventilace při respirační insuficienci

Ventilační úsilí a plicní ventilace - dány stupněm stimulace dýchacích svalů podněty z dechových center- výkonností dýchacích svalů- velikostí odporů , které musí být překonány

činností dýchacích svalů

Řízení ventilace při respirační insuficienci

Centrální chemoreceptory - akutní zvýšení PaCO2 → akutní zvýšení H iontu v likvoru - podnět pro aktivaci receptorů - zvýšení ventilace - chronické zvýšení PaCO2 → v likvoru dochází ke zvýšení HCO3 – větší neutralizace H iontů →adaptace receptorů

Řízení ventilace při respirační insuficienci

Periferní chemoreceptory- reagují na tenzi kyslíku v arteriální krvi - při fyziologické tenzi kyslíku nejsou aktivní- aktivují se při snížené tenzi kyslíku ( pod 10 kPa ) → aktivace dechových center → stimulace dýchacích svalů → zvýšení ventilace

Řízení ventilace při respirační insuficienci

Periferní chemoreceptory reaktivita je významně modulována hodnotami PaCO2 – hyperkapnie zesiluje reaktivitu hypokapnie aktivitu tlumíU pacientů s globální respirační insuficiencí tedy dochází ke stimulaci ventilace z periferních i centrálních chemoreceptorů

Řízení ventilace při respirační insuficienci

Reaktivita dechových centerTlumena – acidózou ↑ PaCO2 tkáňová hypoxie v mozkovém kmeni celkovými anestetiky barbituráty opiáty

Děkuji za pozornost