+ All Categories
Home > Documents > ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝...

˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝...

Date post: 03-Nov-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
16
57 (2005) 2 393408 臓膬臺膭 臓膬臺膭 臭腮腻腴腂腰腸腻腝腦腩臀臶腶腻腱腺自臶腞臅臠 ῌῌ膎膄膋臢臭臎腌腧膦臷臭臎腠腞臯臣ῌῌ 膉臨臘膋臘膋腾膋膞膖膅臝膕臊膅膋臍膩腔腒 Probing into the Upper Mantle Using Surface Waves: Beyond the Geometrical Ray Theory Kazunori YDH=>O6L6 Division of Earth and Planetary Sciences, Graduate School of Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo 0600810, Japan (Received January 6, 2004; Accepted July 21, 2004) A variety of methods of surface wave inversion, which enables us to investigate detailed images of the upper mantle on a regional scale, are reviewed. The study of surface wave tomography beginning in the 1980’s has brought us with a significant jump in our understanding of the Earth’s interior, particularly the upper mantle. Most of the studies of surface wave tomography have been based upon a geometrical ray theory, working with either dispersion curves or waveforms of surface waves. Such a simple representation of surface wave propagation has allowed us to treat a greater number of data sets, which are indispensable for obtaining high resolution tomography models. However, the ray theory, which is relying upon the high-frequency approximation, is no longer valid when the scale-length of heterogeneity is comparable to the wavelength of waves to be considered. The e#ects of finite frequency are particularly important for the higher-frequency surface waves, which mainly sample the crust and uppermost mantle where very strong lateral heterogeneity is likely to exist. Recent development of the 3-D sensitivity kernels allows us to treat the e#ects of finite frequency in the tomographic inversions. The use of such finite frequency theory will further advance the methods of surface wave tomography. Key words : Surface waves, Upper mantle, Ray theory, Finite frequency, Tomography 1. ῎ῌ῏῍ 臭腞臁臺腬腈腖腱腷腯腹腵腭腂腟臀臶腶腻腱 腺自臶腞 3 膴膡膪臔腬膈腔腩臀腙腉腏腜膸臜腙腇腩臭腟臝膕腞致臐腝膀腗腘 2 膴膡臢腝臥臬腔腩腕腞 腖腣臢腝臥臬腔腩膷臖臭腝臲腡腘膎膄膢臆腞膧膆 腍膾腒腏臄膣腌腧腞膗腪腩腝膺腈臒臗臢腝臘 腎腜臃臷腙膍臕腒腪腩Lamb (1904) 腍臯致腓腖臇膊膮 膽腞腌腑臝臄膐腝腤膠臞腜臃臷腬腤腗腖 Rayleigh 臭腍膟腧腪腩腕腞臯臋腟膽腞腌腑臝臄膐腦腨腼臏 Rayleigh (1885) 腝腦腗腘腌腑臢腝膵腒腪腘腈腩腍臦膳腔腙腝膷臖臭腚腞膎膄膢臆腞腽腈腌腧膁臝臝臄 0600810 10 臂臌 8 腝腋腐腩致臭腞膻臈腢腙膥膓腓腘腈腩腑腚腟臩 至腔腡腎腙腇腩 Dahlen and Tromp (1998), 1.5 腄腁 Lamb 腉腃腌腑臝臄臭膜腟臧臻膙膶腜臰膦臮 臖腙腞臤臄膣腝臗腔腩腤腞腙腇腨膷膯腞臝臄膐腝臲 腡腩腚膘腣腘臛膼腜臭膜腙腇腩Lamb (1904) 腟腕腞膝 腝腋腈腘膃臑臢腜膪臔腝臗腓腘膔腣腧腪腖臛膼腜臭膜腍膷膯腞臝膕自臶腞臵膙膶臈腝腦腗腘腛腉臹膂腔 腩腌腚腈腉臚腬臡膑腓腘腈腩腑腞臚腟膤膰腤腜 臝膕自臶膪臔膋腞膻腜膇臚腚腈腊腩膚臫腌腑臭膜腚膍臕臭膜腬臲腡腜腍腧臝膕自臶腞 臘膏臵膙膶膪臔腬膔腣腩腈腫腥腩臭膜腮腻腴腂腰腸 腻臼腝腦腩致臭腱腷腯腹腵腭腂臼腍膨腏膫腫腪腘腈 腳腂腶腺腷腂腲腌腑腙膬臉腓腖腌腑臭膜腬腈腘致
Transcript
Page 1: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

� �� 57� (2005)

� 2 �393�408�

� � � �� � � �

��� ����������������������� !"#�$%!&�'(��

�)*+�+�,��-./01�2/�34� 5 � � 6

Probing into the Upper Mantle Using Surface Waves:

Beyond the Geometrical Ray Theory

Kazunori YDH=>O6L6

Division of Earth and Planetary Sciences, Graduate School of Science, Hokkaido University,North 10 West 8, Kita-ku, Sapporo 060�0810, Japan

(Received January 6, 2004; Accepted July 21, 2004)

A variety of methods of surface wave inversion, which enables us to investigate detailed imagesof the upper mantle on a regional scale, are reviewed. The study of surface wave tomographybeginning in the 1980’s has brought us with a significant jump in our understanding of the Earth’sinterior, particularly the upper mantle. Most of the studies of surface wave tomography have beenbased upon a geometrical ray theory, working with either dispersion curves or waveforms of surfacewaves. Such a simple representation of surface wave propagation has allowed us to treat a greaternumber of data sets, which are indispensable for obtaining high resolution tomography models.However, the ray theory, which is relying upon the high-frequency approximation, is no longer validwhen the scale-length of heterogeneity is comparable to the wavelength of waves to be considered.The e#ects of finite frequency are particularly important for the higher-frequency surface waves,which mainly sample the crust and uppermost mantle where very strong lateral heterogeneity islikely to exist. Recent development of the 3-D sensitivity kernels allows us to treat the e#ects of finitefrequency in the tomographic inversions. The use of such finite frequency theory will furtheradvance the methods of surface wave tomography.

Key words : Surface waves, Upper mantle, Ray theory, Finite frequency, Tomography

� 1. � � � ���7�8�9:�;<=>?�@A ��������� 3BCDE8FG��H�IJKHL�M�@01�N�OPQ 2BC �RSG�M T�:UA 1� �RSG�VW�XYQ��Z[�\]^_`aA bc"#�d�^�e��f9A gh �+iIj%Hkl`e�M Lamb (1904)^'m:nopq���0br �sA tuIj%8sP: Rayleigh

^v#e�M T�'w@A q���0br �xyz�A Rayleigh (1885)��PQ�� �{`eQ9�^A|}GH�VW~���Z[���9"#A �00b

� �060�0810 ������ 10�� 8��

r ����������H��mQ9��~@��GYiHL� �Dahlen and Tromp (1998), 1.5��M

Lamb���I��0b�@A ����I��$�WH��bc�hG�s�HLxA V��0br �XY�~�UQ� I�HL�M Lamb (1904)@T�¡���9QA ¢£ IDE�hmQ¤U#e:� I���^V��01���¥�����PQ¦§¨©G�"A ~9§�ª8«¬mQ9�M ���ª@­®sI�A 01��DE����I¯ª~9°�M±²A ���~kl�8XYI^#A 01���+³�¥��DE8¤U�A 9´µ���� ����¶�����;<=>?�¶^·a¸´eQ9�M ¹���;�º��H�»m:���8�9Q

Page 2: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

�������������� ������������������������ Lamb (1904)����� 80���Woodhouse and Dziewonski (1984)

��� !"# �$%&'()*����������� �� +,-.���/���0���� 1 23� Nakanishi and Anderson (1982,

1983, 1984)4 ,5�6�7������ [Masters et

al. (1982)]� 8�9��� [Tanimoto and Anderson

(1985)] :;7��<(� =>������������?@AB:C�# �� �� �&�D�EF�� �G�H���0���I&JK�L� ���M�����NO���������&PQ"��RSQ"#T�� �����/����U�V������������W �� ��������WKBJTX1Tromp and Dahlen (1992a, b), Dahlen and Tromp

(1998) 16Y4 :;��Z �&[\�]^_<("# `�� �Z��a TX<(� ���Bb!���c(�� �a"d�0�#e&f"7�Bg$<("#Uh�TX&[\W�Z ��� %ij�EF��@��Q"���&&'k]cCB�L�l^&��#(m:TX !"# ���� �n)�*+Q"�o��(p:�&7C]�"�*� �Z �&[\����������&�� �Z��q&��'�c� r��V�&�j�:ps@!"# `�� T��U�V�������� �� �&B�,�EF���t-:%ij�.>7uv<(]wx 1 23� Debayle and

Kennett (2000)4� �Zy/&fC]��aTX@_x0�:�l^7�� [Spetzler et al. (2001), Kennett

and Yoshizawa (2002)]#90�1z{� �o���������|�fx�2<}"�*&� �o�*+�~��3,��B�C�� fx4�:m�` �5����^_�Br(&[\W�����������@��&'(]L�[Yomogida (1992), Woodward (1992), Li and Tani-

moto (1993), Vasco et al. (1995), Li and Romanowicz

(1995, 1996), Marquering and Snieder (1995), Mar-

quering et al. (1998, 1999)]#�& T �� �6���$,����-.:;� �Nb!��/&7�� 2�Iwf� 3�I������������ [Dahlen et al.

(2000), Hung et al. (2000), Zhao et al. (2000), Spetzler

et al. (2002), Yoshizawa and Kennett (2002b, 2004b),

Zhou et al. (2004)]���7��&'(� �O&���������������I&7��<()*]�"#�� �� ������M�����G�H���

0����&P�]� J&-�5�@"��'C]L��D��������&8Q"|�9�&RS�� ���������������2Br���9&��]�bQ"# `c� 2&w�]� �����:��G�H���� 3�I0��IQ" ;�:|���<`B*"#=�]� 3 �� =>��D�EF�������������&¡W��<(]�"� �Z �&[\W����������&��]V¢Q"# r� ���2�B�]� �������&[\�����£�¤�/¥�¦� !" Neighbourhood Algorithm ����§¨>Z�����������7RSQ"#� 4 �� �Z ��ps&��]�2� ����(p�&m�B���������V�&��]V¢��� 5 �� (p�&m��5����^_wf��������©�&Q" 3�I��������������RS�� ��������������:��9&��]ª�Q"#

� 2. ���������� 3�� S��������«« �`c� =>¡W'(]�"�����������J:|�&��]� r��?`B*f¬# �����/���] 3�I S�0�­*"|��� �LWzd�@�&�AQ"«B@ L"#

(i) ������9�����®¯B&-. °+±�B­*"#

(ii) ���������&fx S�0�­*"#��������� (i)��� �� ����Z&8�� h�q¯B�Ci�-.,+²!��U�V��-. °+± �BD"«B@ L"[Trampert and Woodhouse (1995), Laske and Mas-

ters (1996), Ekstrom et al. (1997), Ritzwoller and Lev-

shin (1998)� Larson and Ekstrom (2002)]# `�� h�q&³.�]#eQ"����Z�E�8´ °FGµ��a���c(± ���]� -.�B­*"«B7©� !" [Laske and Masters (1996), Yoshi-

zawa et al. (1999)]# «�f¬&� h�q¯B&D�(�-. °+± �B��� ����:��¶Z­*�«(���] 3�I S�0��IQ"«B@ L" [Nataf et al. (1986)]#«��� �� 3�I0�­*"` &·��H¸°-.�²!� -.�B¹�2�� 3�I0�¹�2�± @I?B:"# Vº�J(� Fig. 1(b)�f¬&:"#������9���]� -."�²!Q"

¼ K L M394

Page 3: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

�� [Nakanishi and Anderson (1984)]��� ������������ ������ ����������� ����������� � !"#��$%&'������()*�+,- ��./�01�2 � 34� ������5678���$0���9:;<="%� � [van Heijst and Woodhouse (1997,

1999)]� &'������� >�2 01� ���������?@ABC� DE�F�G*�����/$H� �IJK�LMNO�A�P�Q"AH��GRSTU�VWT��� (ii)����XY� GR!�;����$%STU�VWT� 01� &'������� >���� !�01� �������;�ZA���[� \Q�]��^_�`�����[ � Woodhouse and Dziewonski (1984)ab� �����;c10GR���$%� +,� 3�d SGef�g1 ���� Lh�Ui�ji�kdAlH��Q"0 [Tanimoto (1987, 1988)]�

Nolet [1990]�� GRm#+, 3�def�g1 ����H� no&'�G*p�A 1�d SG78ef�g1� !��m# 3�def�g1 ��E� �=q Partitioned Waveform Inversion (PWI)�r��s�$0� ��r���tu�vw xG* y� 1�d�jikd� 3�defz�{9| �>�2 � ^}��"� Fig. 1(a) �DEA~Q" �

PWI����8A���GRj������ >��H� &'������������������A

��� Nolet (1990)ab� PWI��!"A������� �A�IJ���i�� 3�d SG78ef������� � ����I����TKiefkdA�lH��Q"%� [Zielhuis and Nolet (1994), Debayle

and Leveque (1997), Lebedev et al. (1997), van der

Lee and Nolet (1997), Simons et al. (1999), Debayle

and Kennett (2000), Lebedev and Nolet (2003)]�Woodhouse and Dziewonski (1984)�+,J�STU�VWT��;� Nolet (1990)�DE��,J����;� ����� ��GR�� GR��o"�G* y� 1�d SG78ef�¡¢AD � �£¤$%� ��2 � �¥A� ��GR�G*��A�¦�%��Q"� G*��§�3�Q" �

Nolet (1990)�¨©$0�,JGRSTU�VWT�xPWI�| ��� ªG�A«¬� 5678�­�g1 >��H� ��JA 3�d SG78ef�g1 ����[ � $m$� PWI����§A®¯0 yJ 1

�def���� 01� °�]±y²AD¯%³´ �]µ� xG*��§m#�o"| �DEA� ªG�A«¬$%�¶� ����$AH����DEA� G*��A�¦�0·��¸�GSTU�VWT����¥A� 5678�­���� ��(Fig. 1b)�� GR��m# SG78ef�g1 ��(Fig. 1a)���Q" ������$m$�¹��;A��ªG3�A�¦HG*�����$%� 01� G*���Amm=#o� �"#�K�LMNO��ji�

Fig. 1. Schematic illustrations of multi-stage processes for surface wave tomography: (a) 2-stageapproach and (b) 3-stage approach.

¸�GSTU�VWTAD ���TKi»��¼¤ 395

Page 4: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

������������ �� �������� ��������� ������������� �� � ����!�"#$%&'�()�*+������,- �������������./01234�5& [Yomogida and Aki (1987), Sni-

eder (1988), Tanimoto (1990), Meier et al. (1997)]67�89�� :;<�=�>�0���??� �������� ����@)������A<BCDE�� F�� [Yoshizawa (2002), Kennett and

Yoshizawa (2002)]� G�HACIJ��� 3;KLM�K�N��� [Yoshizawa and Kennett (2004a)] ���� �� O�PQ%��RS��T�"���� ������ Fig. 1(b)�(U�VWX��� ���� 3 Y���������!"%+ ��Z��?&5�� 4 [�2\]�%%�� ;^ ��PWI�+_�`�%+'5&� �a�������b9 1;K S�X�LM c����?&5�d�

� 3. ����������� ���� 1�� S

������e^ 0\]�(U�� 7#�$f�A<BCDE� �� �R%&�`g&��a������� ������h'%+'5& ��i� ��j��a����������k2(?��) k l?�� �am�0� n�o%�5�&5���������� [Nolet et al. (1986)]%� 0Ul?�<�=Q%�%&�a%� pq�ar(stu%&�a%�v�WwwP n�o%�5������� 3U�� [Cara and

Leveque (1987)]%�� _x9�yz0�a z4{+�9��R*|� 1;K S�X�LM c�%&U+�r&5}&�+& ~� �� e8�yz ,��5� m��" �5�(U�a������� ��j�z��a�l-���WKBJ�+_�7�R%&�`g&��� c�9� [Woodhouse (1974), Tromp and Dahlen (1992a,

b)] �T� ID���H<n��.�O�P/f�r�%&�a��<�=��a���z4{�('5�~��(U�0�9�

u0(D, w)�J

�j

Rj0(w) exp[ik

j0(w)D]S

j0(w) (1)

�� � w��O�P� j�<�=�;P� D����m'����1� R

j0(w)�pq+ ��wP"���

��w��� Sj0(w)�����j�����CnE

�����%� VW�w�� �)� kj0(w)�w/c

j0

¡cj0� j;�<�=�VWX�¢ ��P £�

¤�¥ |���¦�yz� ����a�;�(U��§ k

u(D, w)�J

�j

Rj(w) exp[i¨kj0(w)©dkj(w)dkj(w)ªD] Sj(w) (2)

�� � Rj(w)% Sj(w)�m�«�¬i�$­�.�pq+®���w�� �)� dkj(w)dkj(w)��R�¯'�*|�+�P�°2 £� ���RS��l-��� 7±j� ��� ¤�¥ |��(�wP�3²�³j&%´4�� R

j0(w)�Rj(w), S

j0(w)�Rj(w)%7±j

� ¤�¥ |��(���3²0���i��(2)µ� Q��� ¶��·(&�� �� �¸5��VW�T����67��R*|��P�°2�� P�r(s S�X�%8��°2�('5¹º� 7±��;µ�(U��§ k

dkj(w)dkj(w)��R0¨K ja(w, r)da(r)da(r)©K

jb(w, r)db(r)db(r)

©Kjr(w, r)dr(r)dr(r)ªdr (3)

Fig. 2. 1-D sensitivity kernels Ka�(k(w)/(a(r),Kb�(k(w)/(b(r), and Kr�(k(w)/(r(r) for thefundamental-mode and the first highermodes of Rayleigh waves at (a, c) 50 s and(b, d) 100 s.

¼ 9 : ;396

Page 5: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

���� r ��������� da(r)da(r), db(r)db(r), dr(r)dr(r)��� ����� P���� S���� ������ K

ja�(kj(w)/(a(r), K

jb�(kj(w)/(b(r), K

jr�(kj(w)/

(r(r)��� ���� kj P���� S����������� ����� [Takeuchi and Saito, 1972,

Dahlen and Tromp, 1998], 1������ !� "#$%&'(��� ���� j�)#*���+,� �� �-./#0123&�+�456� 7��89:;<��:=�>����

Fig. 2� 1������ !� "#$%�:=�� ?@,�AB7� C�1AD�:�EF6A�� GHI�)#*�J�)#*C�>� 1������ !� :>K6A�� GH���� S����+�L>�M���� P���N��+89��O�P2A� ���89���� ��Q�2���� GH� S

���&RS#T�U��:��F6� S������ P���N���VW2��� � �� S

����+X:Y!����CZ�� ��" �J[\�]^�_#`a���� ���� 1��D�������:bc� ��:�A6" �]�de:fg6� h#�]&ij,P2\k�CZ� 1�� S���D�:bc6A\� lm��� ��" �J[AH�]^�_#`a��:n6XCZ�

3.1 ������������]^�_#`a����]k$%���� o&'kLP 2p(Nq)(�J[\^�_#`a���� �]+FH$%:�*'�r\�&�� L+kr:bc����:o&� s��]t ^�_#`a�&'u,� $%v,��]+2�6A�w� xy'�-z{|@)}%�CK6�~#"%������N�A [Sen and

Sto#a (1995)]� �.��A6� � 3.2������/s��]t ^�_#`a�&�� ��0,�k�� ����� PWI(��A����]+�]^�_#`a�( [Nolet et al. (1986)]�:n6XCZ�

Fig. 3�� Hiyoshi (2001)�C����R��:=��������12, 10 km&1\�234�X:�������5F6^�_#`a�:�K6A�� � 1��)}% �6�� w����%� :�7��3�{<fgH|@)}% ���� ��^�_#`a�:��F� L�'�bGKH)}%,U�#�=2�6A�� 128 250 km��G��9�'C\*�2�6A�,� ��lmD��|@)}%����,B&z7n��kA� ����� ��,1AHc�I�)#*,B&z7:�2��� 250 kmlm1����� !� ��O��AHc1� r;��

G�C\kA� F�F� Lw����% r;��O�C\� ^�_#`a��J�)#*�]�C\*�2�6A���CZk 1�� S��� <�� J�)#*��� � �:^�_#`a����&�CK6>=��� ¡�g(� Montagner and Jobert (1981)¢� F�FFig. 3CZ��]/,:����(� £>��¤#,¥?kI�)#*¦@>§c6^�_#`a�:�Z�&,¨;���� 12A© r;:B��&,�ª���]^�_#`a��J[A6 1��D�:bc� ��C� 3��D�:*���«���� C\�]}#0:¬­�®"��DE,��� ¯F� �CZk�]®"�v®"2��CZ�k� [Debayle (1999),

Lebedev (2000)]� 2G�]}#0:��FH 3��)}%,=��6A��

3.2 Neighbourhood Algorithm� �������������

H°CZ�$%:�]+FH�]^�_#`a�(�� ¤W±I,C\2G�]}#0:����²��2ªk�.,��� F�F� L¯¤W³��´�k©w�C�� ¤WµR�:�G�¶�·��^�_#`a�:�Z�&,¨;&kK6ªH�J¸��� )��"%~(�J[A6±I'�)}%-./#0K¹Lº:�Z Neighbourhood Algo-

rithm (NA) [Sambridge, 1999]:�AH�/��]k

Fig. 3. An example of a synthetic test ofwaveform inversion for retrieving a 1-Dshear wave speed profile based on a lin-earized inversion scheme of Nolet (1986).(a) 1-D shear wave speed models. A start-ing model (black solid line) has 3� fastershear wave speed in the mantle than thereference model (dashed line). (b) Initialwaveform fit and (c) final fit for a retrievedmodel [modified from Hiyoshi (2001)].

���^�_#`a��C�w����%4�¼M 397

Page 6: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

������������� [Yoshizawa and

Kennett (2002a)]� ������ ���������������� � ��������!"�����#$�% ��&�'()�*�+,-.�/'01� 2�� � 3�4��������56�7'0�� 8�9�:;<!=�>?@AB01�

NA�5C0D8���E�F���� G �����HIJ� 2KL�MN!ONPQ���RS�����'�T�UM�AV�� 2�� � WXY�Z��[�D!\G0]^A__�� Yoshizawa

and Kennett (2002a)��� `a��!bc6 (3)d���� (2)d�5C!�3�e�fg�`a��1�WKBJ�!5hN�����i � '��RSjkl�G�!mnN1��

NA���������� Fig. 4 !o�� ����� ��Zpqrsk��t�u�vw #xy 26 km%!Oz�kl�[r�{�� CAN|}~��������������N1�� �3�G���G������N1�� Fig. 4��!� ���������i � 3,000�� 1�������MN�8�lN1�� ����'|}���TA�y1/�_L�!1�_L 3,000�*����������� ���N�oN1�� �1�����A56PC����o� ��-!i*h���0�����3�oNV

��w�A�6����Z���A�6� 400 km�x���q�����A�1� � <�l�x�����V*I56 *L01A� �������¡���0���!O�����W��l��¢!51�

3.3 ����������� �����������

Yoshizawa and Kennett (2002a)�� Fig. 4���5C!� ��W�����D!5hN£LK� 1����������'� b ¤5¥����Z�fg¦§AG!"1¨§� *� '�o�� ©*I� ��A56PhN1�ªI� fg�.�/56#�yKN1�'1«��fg¦§�`a� (3)d'¬$! 1��� S�¦§�%!­® #��q�����9�p�% �_��"¯�°�±�VI� &¯�²0� 1�����_L� ¬³§����W��lA£LK� '/� IC�� _� ��A56W��lyKN1�ªI� KL²0�1�����_L£LK��´µ3�_0I�¨§�56¶·�� [Yoshizawa and Kennett (2002a)]�

Fig. 4(d) ��� b ��Z¤5¥ 1�' 2������Z�fg¦§� PREM [Dziewonski and Ander-

son (1981)]_L�`a�oN1�� ¸!� ¹º�b ��Z!"N�� |}���fg_L��R}�f

Fig. 4. An example of fully non-linear waveform inversion using the Neighbourhood Algorithm ofSambridge (1999) for an event in Sumba, Indonesia, recorded at CAN station. (a) Density plots ofall the models created by the NA, ranked in order of increasing misfit. The initial model is shownin a dashed line and the best-fit model is in solid black line. (b) Initial waveform fit and (c) final fit.(d) Phase speed perturbations for the first three modes, estimated from the best-fit 1-D shearvelocity profile. A gray solid line (top panel) is a dispersion curve for the fundamental modeRayleigh wave which is measured directly from the observed waveform [after Yoshizawa andKennett (2002a)].

¼ ' ( )398

Page 7: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

����������� ��� ����������� 1�������� �!"������#$%�&'(���)���#*�+�����&,- �./01�230�4��-56!�7� 1�� S���89�:;<�=���)�# ��� 1�������>�?�@���AB&CD���E�"����FGHI��#J���[Yoshizawa and Kennett (2002a)]�����4 K�&,L�./01�230�-M��N� ���� OPQ �� 1�������� R�!���.�ST�.#&'U6�)�VQ W� 1

�����4 "��X�N����)��)Y�� P! (�-�./01�230�4 "�-ZI� 2 p

�[\���]@�+Q^'!% �.��N-_0`a�bN�c-Ude��� f���X�N�c-FGHe���-L��

Kennett and Yoshizawa (2002)�4 �./01�230����! 1�������AB&CD���E�"����g% ������� h�i��E�"�����j-�kI���� 3�� S��������-��I��� l3-stage inversion�m ��n�! (Fig. 1(b))� �����4 ��Eo�B&Cp�\o�- q���r�s�V��tuP�v��"������g%���#�G��� &QwxL 3

��89���#J�L� [Yoshizawa and Kennett

(2004a)]� �yz{ ���V��tu-O)�|�'}�I��

� 4. ������������~y����!&,- � ��./01�230���'4 ���������-A�)�)�� ��������4 Dp��� lp�\�P!4�� 0m ��-�Q!6�)�� "7������##$I�����-%���)�U-4 �����Dp���4&'�Q!O� � ��./01�230�A���WKBJ�LK����-A�'�������� �[Woodhouse (1974), Yomogida (1985), Tromp and

Dahlen, (1992)]4 I����&,L�&-A�)�)����� q�'��4�VL���N� ��p()��"7�@���N���#$I�� ����*�������"7�@#��I��U ���V���tu#�+�L�� W�!% ��p(����,s���tu#- �GL'LQ wavefront healing�&,-����¡��4¢.�GL)£¤#¥�� [Nolet

and Dahlen (2000)]� P! ¦)"7�@#��I��U-4 ��������§�N�+-L� [Laske

and Masters (1996), Yoshizawa et al. (1999), Spetzler

et al. (2001), Yoshizawa and Kennett (2002b)]����4 "�����-MI� 2���/01�230��U�/-�� 01���V��tu-O)�vY�¨�� ©��ª«��=-ZI��V��tu-O)�4 Marquering et al. (1998, 1999), Dahlen

et al. (2000), Hung et al. (2000), Zhao et al. (2000)LK�¬­R�!)�

4.1 ����������P§ ����-A�)!"���=�/01�230-O)�vY�¨&,� STR��01�"����dy�"������ dc��Z®4 �¯�&,L��-56!�°��0R�� [Woodhouse and Wong

(1986)]�

dy(w)±²k(w)� dc(s�w)c

ds (4)

��� s4��-56!³2��I� � �����-&�"�´�;µ¶�4 ��&,L�.Z®-A�)�)�������4 Fig. 5(a) �&,- !�Y���$�3-¦)"7�)�#���!���N W�45���#6·�L)VQ ���.-4��"7����47¸R�L)� (� �VL���NO'��4 ��p(���)� l(��-4 µ�¹�º�0�0£R��m -��I�"7�89�����N���)�(Fig. 5(b))� �!#6� q-STR����=4 1

��-56!89�8L��7�4L' W�p()

Fig. 5. A schematic view of (a) a geometrical ray and (b) a finite-width ray. Actual surface waves willhave some sensitivity to a region around the path.

01�/01�230-&��5h0´�45�¼& 399

Page 8: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

��������� ��� �� 2��������������� �������������� !"� (4)#$%#���#�� �&�'

dy(w)(��K2Dc (q, f�w)

dc(q, f�w)c

dq df (5)

���� K2Dc (q, f�w)$� ��������)���

���* 2��+,-./0./1234�5��� �� �6�� 7��89:�;�<,=2>?,:@ �A:B�� CD�� 7��1234�E�FG�H��@IJ�� �J� 7��1234$� KLM2N�O� P��� Q�� �%�RS TUL���VW���#XYJ� �� M2NT��Z��[�\�%]T+,-./0./��I ^_�$� �����` Ga�1234�b��c�;� �de�� 7��1234$� 5�fg

4.2 ����������� ��

���$� �h��ij [Yoshizawa and Kennett

(2002b)]�k[�� 2������������)��������:�l� ���������b���m;� �n� �����5�� ��)!o��"!F� #p��:$q �Ars%t��AQ�:�bAu�;� ��vw:&C ��: x<,y4z,{|2,} A;��~ �h�$� ��Z������������)����!��'��m��� ����:(�y�34|�,�)�������5�A:�;C [Yoshizawa & Kennett (2002b)]��<,y4z,{|2,:��;C 2��+,-./0./1234 P�� 80*� Rayleigh�S : Fig.

6�� ������Y$������'Y���;� �+�,��rR��� �C� 1-������o.�+,-./0./:�b�������*;� 7�1234�$� 6����KL/0G����+,-./0./:�b<,y4z,{|2,��1$� \��� ��!o��"!F� #p����[C�"!Ars%���5� A�u���2�J��d� ��3������4��[�� ;CF[�� k5�����y/2���;�'C�����:���<,=2>?,:@ �AF�'����y/2����A6 ;�¡A� <,y4z,{|2,��~F¢7����5�AF��Yoshizawa and Kennett (2002b)�k[�� £������y/2�M4����A�`¤:�l�¡� �+���������y/2���YJ!o���$) 3,000 km� �,��$) 40*�5 ��A'��<¥2����#p0G��<,y4z,{|2,��$) 200 km�� %8� 2-���F9¦ !"� \�:b�<,y4z,{|2,F¦§;C���*¨��$) 300 kmA�d� �J$�� 40*����;C���������y/2�M4�©!����7ªA���;

Fig. 6�� �<,y4z,{|2,1234$� ��«2{��¥¬�<� 3�����=��­�YJ� \� �®F�YJ�� [Yoshizawa (2002),

Yoshizawa and Kennett (2004a)]<,y4z,{|2,:�� ����/$� \�U¯8>�5 e��°?3��VW�C+,-./0./1234 P� 5�±@ S �U¯�$�A��U¯':B CD� �²C� PC³�{N�� �´�DEU¯µ���F¶FA� ;�;� <,y4z,{|2,$� Z·���G¸�¹¡"Iº�¡�U¯�

Fig. 6. The influence zone kernel for a Ray-leigh wave at 80 s for a path between anevent near Irian Jaya and NWAO stationin south-eastern Australia [after Yoshizawaand Kennett (2004a)].

¼ H I J400

Page 9: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

����� ������ ������� 10��������������� ��� !"#$%�&'()*'+,-'�./01�23456�#789:�;<4 ��=� >?#@AB4�� CDE'F)GHIJD���� !�KLMNGO� 30PQR�STUVW�X<Y�=� � 5�Z[O�;<4 3\]^_�`O�a'bcdecdf-g)�h#i�����

4.3 ���������� ����&'()*'+,-'j���&'k-lm'#�Fnop(d-nq)�rst�u�;<4KLvw��0� xY�Fnop(d-�y9:��z�{;<� Yoshizawa and Kennett (2004a)#|-+Fp}~H��VW�Fnop(d-nq)�`���������f-�-�c+F��� Fig. 7 ��O�

���f-�-�c+F=� Fnop(d-nq)�rst������h9:�#� ������=� ��q-�����&'k-lm'�B�� (4)��;<���������������#h9:�� �0�� ��;<4��q-��=� ���4������� �j��� ¡¢x£¤4rst¥��B=��¦�§����r¨B©'ª'o�KLz����B�4��«¬1=� ;­¢x£rstV¢O��®� ¯�nq) (Fig. 7(b))�`O���q-�� ��°±B&'()*'+,-'�� (5)��;<4²³´r�;��µ®�� �������KL¶·���q-�h��rstc+F���� ��Y� h����r¨= Fig. 7(a)����¸����������� (4)��;��¹]9:�nq)

Fig. 7. Realistic resolution tests using the ray theory and influence-zone theory. (a) Ray paths, (b)input checker board model with 5-degree cells, (c) retrieved model based on ray theory and (d)retrieved model which is updated from (c) working with both ray tracing and the influence zone[after Yoshizawa and Kennett (2004a)].

VW�&'k-lm'�;�CDE'F)JD�»¼ 401

Page 10: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

� Fig. 7(c)���� ��� ������ (Fig. 7

(c))����� �������������������� ����������� (5) �!"��#���� � Fig. 7(d)����

Fig. 7(c)$!% (d)�&�� ��'(�)*��+�,-.� #/�'!0�#12��+� �3�������� -.� ���)*��(4�,�$��� ���� �56789:;��'�2�<�&=1>�4+� ?�� �@���������� -.� ��)*�'�A�(4�, B �� C��DEFG���H�IJ�K -L"�&� #/�89M<��-�#12��+�N'3+� ���� (Fig. 7b)��#�� ��OPQ.� ������ (Fig. 7c)- 0.48� �@���� (Fig. 7d)- 0.54�4R� �@��STU�7��V���+� -� �@���� -. Fig. 7(c)����� ��������+���W12��� ��R� ���� ��A�E�'X�2���&� �@��ST�Y ����*�Z[�-.� \�� �!R!0�#-]+�'3+�!^4� �@���� !_7.`a�� �"�+ variance reduction3b&#b3-LR� �@���� �'c��]4$ BC��DEFG%-.& 10dK ����'�12��+ [Yoshizawa

and Kennett (2004a)]� !^�� ��*�Z[���^a�� �@��ST�Y �+�-� '()e�]1f�56894g� !Rhi4D�jE�k��� �#'l*�4+�

� 5. ����������� �������� 4-.� ��� ��������^m��no+�,����� ,-��@��ST����p���� �3�� q��567'.r���� ������s/3bq�t0�'u1�4+vw�.� no.x^04+� ��� _�y2z{-.40� �834������ �@��ST&|R�2���*�Z[���^�'-]2}� !R5~4,-�67ST�Y ��D�jE�k��� �8+�'-]+� ��>�.� !R�49 ����� 3�#)�� ':��4+� -.��� Yoshizawa

(2002)f Yoshizawa and Kennett (2004b)���]�1�;�t0�������� _�'(<�"�+ 2

�#����k��k)�� ��>� 2!R�>b2+,-��8�"�+ 3�#����k��k)�� ����+�

5.1 Born/Rytov�����������������Q�,�${+,-��=v.� ,-������ �>���� �!^�,�-]+ [Tanimoto

(1990), Tromp and Dahlen (1992)]�uR�rU(r)cR�k

�1R V(r)�1cR: Rayleigh wave (6)

uL�k�1L W(r)(�r��1)cL: Love wave (7)

-� U, V, W.��OQ� r.�?��@_��D � �1.�A�B� kR$!% kL. Rayleigh�$!% Love��Q Bk�w/c, c� _�'(K -L+� cR

$!% cL.�2�2 Rayleigh�$!% Love��O�+����� -LR� ���  ¡ ¢�C �

[�1�k2(x, w)] c(x, w�xs)�0 (8)

�D���)E���£4�� c�A exp(iy) BA� <�� y� _�K �,�-]+� �¤� Rayleigh�$!%Love����E¥¦.§F�+�¨� ©���56�!"�ª«+����� ¬=

dc�_�'(¬= dc�>��� Bornno�G��2}� ,-������ ¬=.�!^4­�C -H¥b2+ ®Born and Wolf (1999) 13¯°�

dc����2k2G(x, w�x�)c0(x�, w�xs)dcc

d2x�

���K Bornc (x, x�, xs, w)

dcc

d2x� (9)

-� x��(q, f). 2�#,--±I���� c0(x�,w�xs).²³ xs3bt0J x��-����� � G(x,

w�x�).t0J3b´KJ�-jF��OQ����K

Bornc (x, x�, xs, w)'_�'(/�- 2�#����k��k)�� -L+� c0$!% G.Lnno�����Mµ��>+�'-]+ [Tromp and Dahlen

(1992b, 1993)]�Bornno-.� ,-������ ¬=�¶·­���H¥+'� �`�._�f<�y2'��12+�'��� vw� Rytovno���+�N�-L+ [Yomogida and Aki (1987)]. Rytovno-.,-������ "Q�|R� F�ln c�ln A�iy��+�-� <��_���2�2`��¸��O-]+� �]� Bornnovw�P�� dF.��!^4­�C 8-H¥b2+�

dF����2k2 G(x, w�x�)c0(x�, w�xs)

c0(x, w�xs)

dcc

d2x�

���K RytovF (x, x�, xs, w)

dcc

d2x� (10)

2!R� ,-�_�$!%"Q<�¬=.�2�2� ¶·­�!"�

dy���Im¹K RytovF º dc

cd2x� (11)

¼ Q R S402

Page 11: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

d ln A���Re�KRytovF � dc

cd2x� (12)

����� (9)�� (10)������� KRytovF (x,

x�, xs, w)�KBornc (x, x�, xs, w)/c0(x, w�xs)� ������

�������� � 30!��" Rayleigh# $%& 100'�� 50'( )*+,-./01/02345Im�K Rytov

F �� Fig. 867�89 (11)�) Im�K RytovF �

:� ;�<=>?@ABCD-EFG5�HIJKLMN��� ���: PREM���IJ� ��N:OP)%&�H9K)��Q� RS�T�)�UOV�W�IJ�@� X)SM� YZ[\�,-./01/0��]IJ� %&�^_IJBD45`3-�+a9�b)c�dI� e%&fghijk%&�:lj@ RS� �T�� mnopq�rs),-./01/0�KtJ� ��:� uv)w-B5x-E`3-�yz)O{��

Fig. 8|7�� #}~���),-./01/0)���BCw5�89 #}�+a9~�������Q� X)%�b�rs),-./01/0�_�IJ� +����nISe%&�\#���H9 3��,-./01/02345 $��������3����2345( �:� #}6�),-./01/0

����@� [Marquering et al. (1999), Hung et al.

(2000)]� �#)��: 2������9SM� (11)

�)2345�: p/4)*+)����R�� ~�#}�),-./01/0����:@N@� [Spetzler et

al. (2002)]5.2 3��������uv),-./01/02345:� 2���@*+�!���H9K)���� ��� ¡IJ 3��S#�!���H9�#,-./01/02345�LM����� [Yoshizawa and Kennett (2004

b)] ¢£�X)¤¥�¦ 9�� R� Bornq§�¨N�S�#©/-.ª5)«¬ (9)���I� (7)��Q�##­)«¬ du�LM ���: Rayleigh

#)®¯°�)±�W²� ��� du�I� �)��),-./01/02345�K

Bornu (x�w)�9���

du(w)���K Bornu (x��w)

dc(x��w)c

d2x� (13)

���}­q§��³ RS� 1��´µ��FG5�H9,-./01/02345 K

1Db (r�w)����

�� �´o x�(q, f)�)�325@*+�!)«¬dc� S#�!)«¬ db)}­q§:�

dc(x, w)c

��K1Db (r�w)

db(x, r)b

dr (14)

Fig. 8. Two-dimensional sensitivity kernels for Rayleigh waves at (a) 100 s and (b) 50 s, derived fromthe Rytov approximation. Representation of imaginary parts of the sensitivity kernels (top), andthe cross-path profile of both real and imaginary parts of the kernels at the center of the path(bottom).

�#w-�3·¸-��6�¹-º5»�)¼P 403

Page 12: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

����� ��� r������ ����� (14)

�� (13)������������������� �!"���#�$�� 3%&'()*+,*+-�./ K

3Db (r, q, f�t)0���� ���1� ��� ��

#�2�� 3%& S3�45�67�#� ��

du(t)8���K 3Db (r, q, f�t)

db(r, q, f)b

dr dq df (15)

�9:;<#=>��?���Fig. 9�� PREM�$�@ABCD�E�F�GH���$�� 3%&'()*+,*+-�./���������I? 90 km��J���K�L��<�M�!"�I?�N���K�O�� PM �� 30

�� QR� 30S100��O�� QRT0�U�O�CB� Fig. 8�V��9:;WHFX�Y�Z[('/\]^?�@_�� `C������ Pa���b�c�d��@!e� �<�$�fg�$h;#i�;j@_�� `C� Pa!9klm�=��n��'()*+,*+�����

Fig. 9��� '()*+,*+-�./�������o0 �� Rayleighp�!"#q� 850���� r�'()*+,*+0<�=��s��@_�� (Fig. 9a)� t�q� ����u���<�'()*+,*+�r$0�%�vv� �<�wxy� 0z0j@_{ (Fig. 9b, c). Rayleighp�&'�

950� (Fig. 9d)��� �<|�'()*+,*+�}~�X�;e� <��{��C� ���'()*+,*+����� <|�'()*+,*+�r$�(�� p��)������@���������0 ��

(15)��D�_@� ��9:; 3%&-�./�*+���� ����)�m���;{� lm?�C�P�,�#� 3%& S3�45 -�AB���0�.�;�� �u� �/�#H(����(0���e����{jC�U1��ud��C 3%&45�2&0�1�� ?��� (15)��*+�C����FE��(��9e� <Q3�� 0lm#��~����45 ���u�+�O��

� 6. ����������6��� �/� ¡¢ <76�� n£��U1���d��C76`�� ¤����#�¥0�H(����(0�v_@¦§�@1C� 908�¨©� �ª�.;��«¬�­®��u�� ��^E�¯�+��°� ±.u9: �N|�@1C� ��� t�ª0�D²�;�76�� ¡��=>0³`�@_�Ue� t�ª0�´�@;.��;{� =>�¥<��=µ>��r�_¶�u��;_�_:·¸�� ¹º?��@A0O��

Fig. 9. Representation of time-dependent 3-D sensitivity kernels for a vertical component of Rayleighwaveform in a frequency range between 0.01 and 0.03 Hz. Instantaneous sensitivity kernels at (a)850 s, (b) 870 s, (c) 890 s and (d) 950 s. Corresponding waveforms for a fundamental-mode Rayleighwave (top), horizontal slices of the kernel at 90 km depth (middle panels), and cross-path slices atthe center of the path (bottom panels).

¼ B C =404

Page 13: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

���� �������������� ���������������� ��� ��� ���������� ����� ������� �!��"�#$%� �#��&�� �����' ( ���)�*+���� �%�$!� �,�-$!�.,���������/0�� /�1�2��34�� ����5��*+����6�,!��.�7� �*���7%������� �89�� ��-:������( �*+;�<"� �����������=�7���> �� ��6?"�����7%������� � ����6����� �@ABC�DE�0��F7 G)!�HIJKA�7"LM��#��NO ��� �����P LM$ 40%QR� ST��P �LM$ 20

%QR�����NO� ���&6�'(�UV�0�F7 G)!�%��� ����WK �)* X�7YZ�[\ ]^+� _,� ��P`abcdE�e �HI�f-6�� [Snieder (1988), Kennett and Nolet

(1990)]� �%�$!� -�.g��h/��i01j��%���� �,.�HIk l2�%���346���Bm� �*�&nol2�%�����������/0�pZ����,�-:��$!X% [Yoshi-

zawa (2002), Ritzwoller et al. (2002), Friederich

(2003), Yoshizawa and Kennett (2004a)]� �#�� �,.�89��7!#�,!7��*����� YZ�mq�-$!5rs�,!��� �t��.�����M6�,��� 5 uv�% 3TjwExy�zy�a�{0 �� 1T^+�HIl2�!��� ����WK �|�}7�~7�"LM�����#���6��� ��� �#������� � k Bornmq���8�9�� �#.� �7� ST��P�#��NO��� F7 G)�-$!:����P`abcdE��HI�l2��34��� [Kennett and Nolet

(1990), Marquering and Snieder (1995)]� �%�$!���HIk l2�%a�{0�#��;� ���������<��� -�[����=N�����k >��%�*�a�{07!���E����E�:���� �?������' @ �A�!� BC���D346��� �#�� mE���F(����SFs6��( ��G�-�� 3Tja�{0#�%������� ��H6��I�� �:� �7-:��4,��

Lamb (1904)�� �+B��������66��4,4,���%��� �k�� ��5r�����[

������� �k m'K.,�#� 67:���� �I ���'(k J��,%6?$!-7W¡:� �,�� �����' ( ���6 80EKQ¢������������-�CX��o ��� �#�� LM 30%QR�"LM�������� �����-�O���WK �£�)* X�7� k%"LM����O���� �@���¤�� 3Tji0�3¥6��� �� ¦�%�*�&a�{07%=�7������� �� ������-�§L� ��������m'K�%��� CX�§¨�����6M6 X��

� ���©M�ª«N"! W�$%O¬§P­�®¯�k�� �� uv�%����°Y�E����E �89±²��%�� Brian Kennett, Eric Debayle,

Malcolm Sambridge, Sergei Lebedev, Tony Dahlen,

Barbara Romanowicz, Jeannot Trampert� QR S�I³T´� °­#.�µ�¶¨?UXk�%� �89�§��� V�·�¸·�89WX¨¹ ]��Yº15740266e �-�»¨JKk�%�

� �

Born, M. and E. Wolf, 1999, Principle of Optics, 7thed., Cambridge University Press, 952 pp.

Cara, M. and J. J. Leveque, 1987, Waveform inversionusing secondary observables, Geophys. Res. Lett.,14, 1046�1049.

Dahlen, F. A. and J. Tromp, 1998, Theoretical GlobalSeismology, Princeton University Press, 1025 pp.

Dahlen, F. A., S.-H. Hung and G. Nolet, 2000, Frechetkernels for finite-frequency travel times-I. Theory,Geophys. J. Int., 141, 157�174.

Debayle, E., 1999, SV-wave azimuthal anisotropy inthe Australian upper mantle: preliminary resultsfrom automated Rayleigh waveform inversion,Geophys. J. Int., 137, 747�754.

Debayle, E. and J. J. Leveque, 1997, Upper mantleheterogeneity in the Indian Ocean from waveforminversion, Geophys. Res. Lett., 24, 245�248.

Debayle, E. and B. L. N. Kennett, 2000, The Austra-lian continental upper mantle: structure and defor-mation inferred from surface waves, J. GeophysRes., 105, 25243�25450.

Dziewonski, A. M. and D. L. Anderson, 1981, Prelimi-nary reference Earth model, Phys. Earth Planet.Inter., 25, 297�356.

Ekstrom, G., J. Tromp and E. W. F. Larson, 1997,Measurements and global models of surface wavepropagation, J. Geophys Res., 102, 8137�8157.

Friedrich, W., 2003, The S-velocity structure of the

����E����E�-�C�DE�0���±< 405

Page 14: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

East Asian mantle from inversion of shear andsurface waveform, Geophys. J. Int., 153, 88�102.

Hiyoshi, Y., 2001, Regional surface waveform inver-sion for Australian Paths, Ph. D. Thesis, AustralianNational University, Canberra, 185 pp.

Hung, S.-H., F. A. Dahlen and G. Nolet, 2000, Frechetkernels for finite-frequency travel times-II. Exam-ples, Geophys. J. Int., 141, 175�203.

Kennett, B. L. N. and G. Nolet, 1990, The interactionof the S-wavefield with upper mantle heterogenei-ty, Geophys. J. Int., 101, 751�762.

Kennett, B. L. N. and K. Yoshizawa, 2002, A reap-praisal of regional surface wave tomography, Geo-phys. J. Int., 150, 37�44.

Lamb, H., 1904, On the propagation of tremors overthe surface of an elastic solid, Phil. Trans. Roy. Soc.London, A, 203, 1�42.

Larson, E. W. F. and G. Ekstrom, 2001, Global modelsof surface wave group velocity, Pure Appl. Geo-phys., 158, 1377�1399.

Laske, G. and G. Masters, 1996, Constraints on globalphase velocity maps from long-period polarizationdata, J. Geophys. Res., 101, 16059�16075.

Lebedev, S., 2000, The upper mantle beneath thewestern Pacific and southeast Asia, PhD thesis,Princeton University, Princeton, NJ, 181 pp.

Lebedev, S. and G. Nolet, 2003, Upper mantle beneathsoutheast Asia from S velocity tomography, J. Geo-phys. Res., 108, 2048, 10.1029/2000JB000073.

Lebedev, S., G. Nolet and R. D. van der Hilst, 1997,The upper mantle beneath the Philippine Searegion from waveform inversion, Geophys. Res.Lett., 24, 1851�1854.

Li, X.-D. and T. Tanimoto, 1993, Waveforms of long-period body waves in a slightly aspherical Earthmodel, Geophys. J. Int., 112, 92�102.

Li, X.-D. and B. Romanowicz, 1995, Comparisons ofglobal waveform inversions with and without con-sidering cross-branch modal coupling, Geophys. J.Int., 121, 695�709.

Li, X.-D. and B. Romanowicz, 1996, Global mantleshear velocity model developed using nonlinearasymptotic coupling theory, J. Geophys. Res., 101,22245�22272.

Marquering, H. and R. Snieder, 1995, Surface-wavemode coupling for e#icient forward modeling andinversion of body-wave phases, Geophys. J. Int.,120, 186�208.

Marquering, H., G. Nolet and F. A. Dahlen, 1998,Three-dimensional waveform sensitivity kernels,Geophys. J. Int., 132, 521�534.

Marquering, H., F. A. Dahlen, and G. Nolet, 1999,Three-dimensional sensitivity kernels for finite-frequency travel times: the banana-doughnut para-dox, Geophys. J. Int., 137, 805�815.

Masters, G., T. H. Jordan, P. G. Silver and F. Gilbert,1982, Aspherical Earth structure from fundamen-

tal spheroidal mode data, Nature, 298, 609�613.Meier, T., S. Lebedev, G. Nolet and F. A. Dahlen, 1997,

Di#raction tomography using multimode surfacewaves, J. Geophys. Res., 102, 8255�8267.

Montagner, J. P. and N. Jobert, 1981, Investigation ofupper mantle structure under young regions of thesoutheast Pacific using long-period Rayleighwaves, Phys. Earth Planet. Inter., 27, 206�222.

Nakanishi, I. and D. L. Anderson, 1982, World-widedistribution of group velocity of mantle Rayleighwaves as determined by spherical harmonic inver-sion, Bull. Seism. Soc. Am., 72, 1185�1194.

Nakanishi, I. and D. L. Anderson, 1983, Measure-ments of mantle wave velocities and inversion forlateral heterogeneity and anisotropy, 1. Analysis ofgreat circle phase velocities, J. Geophys. Res., 88,10267�10283.

Nakanishi, I. and D. L. Anderson, 1984, Measure-ments of mantle wave velocities and inversion forlateral heterogeneity and anisotropy, 2. Analysisby the single-station method, Geophys. J. Roy.Astr. Soc., 78, 573�617.

Nataf, H. C., I. Nakanishi and D. L. Anderson, 1986,Measurements of mantle wave velocities and in-version for lateral heterogeneities and anisotropy,3, Inversion, J. Geophys. Res., 91, 7261�7307.

Nolet, G., 1990, Partitioned waveform inversion andtwo-dimensional structure under the network ofautonomously recording seismographs, J. Geo-phys. Res., 95, 8499�8512.

Nolet G. and F. A. Dahlen, 2000, Wavefront healingand the evolution of seismic delay times, J. Geo-phys. Res., 105, 19043�19054.

Nolet G., J. van Trier and R. Huisman, 1986, A formal-ism for nonlinear inversion of seismic surfacewaves, Geophys. Res. Lett., 13, 26�29.

Rayleigh, J. W. S, 1885, On waves propagated alongthe plane surface of an elastic solid, Proc. LondonMath. Soc., 17, 4�11.

Ritzwoller, M. H. and A. L. Levshin, 1998, Eurasiansurface wave tomography: Group velocities, J. Geo-phys. Res., 103, 4839�4878.

Ritzwoller M. H., N. M. Shapiro, M. P. Barmin and A.L. Levshin, 2002, Global surface wave di#ractiontomography, J. Geophys. Res., 107, 2335, 10.1029/2002JB001777.

Sambridge, M., 1999, Geophysical inversion with aneighbourhood algorithm�I. Searching a parame-ter space, Geophys. J. Int., 138, 479�494.

Sen, M. and P. L. Sto#a, 1995, Global optimizationmethods in geophysical inversion, Elsevier, Am-sterdam, 281 pp.

Simons, F. J., A. Zielhuis and R. D. van der Hilst, 1999,The deep structure of the Australian continentfrom surface wave tomography, Lithos, 48, 17�43.

Snieder, R., 1988, Large-scale waveform inversions ofsurface waves for lateral heterogeneity 1. Theory

� � � �406

Page 15: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

and numerical examples, J. Geophys. Res., 93,12055�12065.

Spetzler, J., J. Trampert and R. Snieder, 2001, Are weexceeding the limits of the great circle approxima-tion in global surface wave tomography?, Geo-phys. Res. Lett., 28, 2341�2344.

Spetzler, J., J. Trampert and R. Snieder, 2002, Thee#ect of scattering in surface wave tomography,Geophys. J. Int., 149, 755�767.

Takeuchi, H. and M. Saito, 1972, Seismic surfacewaves, in Seismology: Surface Waves and FreeOscillations, Methods in Computational Physics,vol. 11, pp. 217�295, ed., Bolt, B. A., AcademicPress, New York, 309 pp.

Tanimoto, T., 1987, The three-dimensional shearwave structure in the mantle by overtone wave-form inversion, I., Radial seismogram inversion,Geophys. J. Roy. Astr. Soc., 89, 713�740.

Tanimoto, T., 1988, The 3-D shear wave structure inthe mantle by overtone waveform inversion, II,inversion of X waves, R waves and G waves, Geo-phys. J., 93, 321�333.

Tanimoto, T., 1990, Modelling curved surface wavepaths: membrane surface wave synthetics, Geo-phys. J. Int., 102, 89�100.

Tanimoto, T. and D. L. Anderson, 1985, Lateral heter-ogeneity and azimuthal anisotropy of the uppermantle: Love and Rayleigh waves 100�250 s, J.Geophys. Res., 90, 1842�1858.

Trampert, J. and J. H. Woodhouse, 1995, Global phasevelocity maps of Love and Rayleigh waves be-tween 40 and 150 seconds, Geophys. J. Int., 122,675�690.

Tromp, J., and F. A. Dahlen, 1992a, Variational prin-ciples for surface wave propagation on a laterallyheterogeneous Earth-I. Time-domain JWKBtheory, Geophys. J. Int., 109, 581�598.

Tromp, J., and F. A. Dahlen, 1992b, Variational prin-ciples for surface wave propagation on a laterallyheterogeneous Earth-II. Frequency-domain JWKBtheory, Geophys. J. Int., 109, 599�619.

Tromp, J., and F. A. Dahlen, 1993, Variational princi-ples for surface wave propagation on a laterallyheterogeneous Earth-III. Potential representation,Geophys. J. Int., 112, 195�209.

van der Lee, S. and G. Nolet, 1997, Upper mantle Svelocity structure of north America, J. Geophys.Res., 102, 22815�22838.

van Heijst, H. J. and J. H. Woodhouse, 1997, Measur-ing surface-wave overtone phase velocities using amode-branch stripping technique, Geophys. J. Int.,131, 209�230.

van Heijst, H. J. and J. H. Woodhouse, 1999, Globalhigh-resolution phase velocity distributions of ove-rtone and fundamental-mode surface waves deter-mined by mode branch stripping, Geophys. J. Int.,137, 601�620.

Vasco, D. W., J. E. Peterson and E. L. Majer, 1995,Beyond ray tomography: Wavepath and Fresnelvolumes, Geophysics, 60, 1790�1804.

Woodhouse, J. H., 1974, Surface waves in a laterallyvarying layered structure, Geophys. J. Roy. Astr.Soc., 37, 461�490.

Woodhouse, J. H. and A. M. Dziewonski, 1984, Map-ping the upper mantle: Three-dimensional model-ing of Earth structure by inversion of seismicwaveforms, J. Geophys. Res., 89, 5953�5986.

Woodhouse, J. H. and Y. K. Wong, 1986, Amplitude,phase and path anomalies of mantle waves, Geo-phys. J. Roy. Astr. Soc., 87, 753�773.

Woodward, M. J., 1992, Wave-equation tomography,Geophysics, 57, 15�26.

Yomogida, K., 1985, Gaussian beams for surfacewaves in laterally slowly-varying media, Geophys.J. Roy. Astr. Soc., 82, 511�533.

Yomogida, K., 1992, Fresnel zone inversion for later-al heterogeneities in the Earth, Pure Appl. Geo-phys., 138, 391�406.

Yomogida, K. and K. Aki, 1987, Amplitude and phasedata inversion for phase velocity anomalies in thePacific Ocean basin, Geophys. J. Roy. Astr. Soc., 88,161�204.

Yoshizawa, K., 2002, Development and application ofnew techniques for surface wave tomography, Ph.D. thesis, Australian National University, Canber-ra, 204 pp.

Yoshizawa, K., 2004, 3-D sensitivity kernels for dif-ferential waveforms of surface waves, Geophys.Res. Lett., to be submitted.

Yoshizawa, K. and B. L. N. Kennett, 2002a, Non-linearwaveform inversion for surface waves with a nei-ghbourhood algorithm-application to multimodedispersion measurements, Geophys. J. Int., 149,118�133.

Yoshizawa, K. and B. L. N. Kennett, 2002b, Determi-nation of the influence zone for surface wavepaths, Geophys. J. Int., 149, 440�453.

Yoshizawa, K. and B. L. N. Kennett, 2004a, Multi-mode surface wave tomography for the Australianregion using a three-stage approach incorporatingfinite frequency e#ects, J. Geophys. Res., 109, B02310, doi: 10.1029/2002JB002254.

Yoshizawa, K. and B. L. N. Kennett, 2004b, Sensitivi-ty kernels for finite frequency surface waves, Geo-phys. J. Int. submitted.

Yoshizawa, K., K. Yomogida and S. Tsuboi, 1999,Resolving power of surface wave polarization datafor higher-order heterogeneities, Geophys. J. Int.,138, 205�220.

Zhao, L., Jordan, T. H. and Chapman, C. H., 2000,Three-dimensional Frechet di#erential kernels forseismic delay times, Geophys. J. Int., 141, 558�576.

Zhou, Y., F. A. Dahlen and G. Nolet, 2004, Three-

���������� ����������� 407

Page 16: ˘ˇ ˆ˙˝ - 北海道大学kazu/pubs/Zisin-yoshizawa-2005.pdf · 57 (2005) 2 393 408 ˘ˇ ˆ˙˝ ˛˚˜ !"# $%!&ˆ’()*+˜+˜, ˜-./01 2/34 5 6 Probing into the Upper Mantle Using

dimensional sensitivity kernels for surface waveobservables, Geophys. J. Int., 158, 142�168.

Zielhuis, A. and G. Nolet, 1994, Shear-wave velocity

variations in the upper mantle beneath centralEurope, Geophys. J. Int., 117, 695�715.

� � � �408


Recommended