+ All Categories
Home > Documents > Robotika - CMPcmp.felk.cvut.cz/cmp/courses/ROB/roblec/rizeni-notecz.pdf · ízení robot· Robotika...

Robotika - CMPcmp.felk.cvut.cz/cmp/courses/ROB/roblec/rizeni-notecz.pdf · ízení robot· Robotika...

Date post: 05-Mar-2018
Category:
Upload: vuongdien
View: 222 times
Download: 8 times
Share this document with a friend
5
Řízení robotů Robotika Řízení robotů Vladimír Smutný Centrum strojového vnímání Český institut informatiky, robotiky a kybernetiky (CIIRC) České vysoké učení technické v Praze 1 2 3 4 5 6 ROBOTICS: Vladim´ ır Smutn´ y Slide 1, Page 1
Transcript
Page 1: Robotika - CMPcmp.felk.cvut.cz/cmp/courses/ROB/roblec/rizeni-notecz.pdf · ízení robot· Robotika ízení robot· Vladimír Smutný Centrum strojového vnímání eský institut

Řízení robotů

RobotikaŘízení robotů

Vladimír Smutný

Centrum strojového vnímání

Český institut informatiky, robotiky a kybernetiky (CIIRC)

České vysoké učení technické v Praze

1

2

3

4

5

6

ROBOTICS: Vladimır Smutny Slide 1, Page 1

Page 2: Robotika - CMPcmp.felk.cvut.cz/cmp/courses/ROB/roblec/rizeni-notecz.pdf · ízení robot· Robotika ízení robot· Vladimír Smutný Centrum strojového vnímání eský institut

Řízení robotů – Přesnost kinematického modelu

load 1

����������

����

����

����

����

����

����

����

����

��

��

��

�� ��

��

����

����

����

����

����

��

����

������������������

����

��

����

����

��

��

�� ��

��

����

��

��

��

��

��

��

��

��

��

��

��

��

����

��

��

����

��

����

����

��

��

��

��������

����

��

��

����

�� ��

��

��

����

����

��������

������

������

����

��������

������

������ Required position

Actual position

Actual positiontrajectory 2load 2

trajectory 1

��

Typy chyb (podobně jako měřicích přístrojů):

[Přesnost] - rozdíl mezi skutečnou polohou a polohou vypočítanou z modelu.

[Opakovatelnost] - rozdíl mezi skutečnými polohami při opakovaném nastavení jednépolohy. Postihuje v sobě různé vůle, rozlišení snímačů polohy, tepelnouroztažnost a podobně. Nepostihuje chyby nastavení počátku souřadnic, jinou nežmodelovanou délku ramen, chyby výroby a sestavení (např. nekolmost činerovnoběžnost kloubů a vedení). Všimněme si, že těžiště ale i dalšícharakteristiky se pro jinou přibližovací trajektorii a jinou zátěž mohou významnělišit.

[Rozlišení] - velikost nejmenšího pohybu chapadla dané senzorem polohy.

1

2

3

4

5

6

ROBOTICS: Vladimır Smutny Slide 2, Page 2

Page 3: Robotika - CMPcmp.felk.cvut.cz/cmp/courses/ROB/roblec/rizeni-notecz.pdf · ízení robot· Robotika ízení robot· Vladimír Smutný Centrum strojového vnímání eský institut

Řízení robotů – Co říká o přesnosti specifikace:

Improved Productivity

Reduction of Maintenance Cost

Providing Safety System Compatibility and Commonality

CR3-535M CR2B-574

High speed, high payload and miniaturization have been achieved through the use of Mitsubishi's own motors, amplifiers and 64-bit RISC chip, all dedicated for high performance robot applications.MELFA RV-S series robots provide solutions for value added systems.

*7: The power capacity is the rated value at normal operation. Please be aware that the power capacity does not take inrush current applied when the power supply is turned on into consideration.The power capacity should be considered a guideline, and the guaranteed operation depends on the input power supply voltage.

*8: Grounding is conducted at the customer's own risk.

TypeStructureDegrees of freedomDrive systemPosition detection methodMaximum load capacity (rated) *2Arm lengthMaximum reach radius

Maximum composite speed *3 Cycle time *4Position repeatabilityAmbient temperatureMassTool wiring *5Tool pneumatic pipesInstallation postureMachine cableProtection specification

WaistShoulderElbowWrist twistWrist pitchWrist rollWaistShoulderElbowWrist twistWrist pitchWrist roll

J1J2J3J4J5J6J1J2J3J4J5J6

Unit

kgmmmm

degrees

degrees/s

mm/sec

mm

kg

TypePath control method

Number of axes controlled

CPURobot languagePosition teaching method

Memorycapacity

ExternalI/O

Interface

Operating temperature rangeRelative humidityPowersupplyExternal dimensionsMassStructure (protection specification)Grounding *8

Numbers of teachingpoints and stepsNumber of programsGeneral-purpose I/O Dedicated I/O Hand I/O Emergency stop inputEmergency stop outputDoor switch inputRS-232CRS-422Slot dedicated to handExtension slot

SSCNET

Memory expansion slotRobot I/O link

Input voltage rangePower capacity *7

Unit

pointsstepsstepspointspointspointspointspointspointsportsportsslotsslots

ports

slotschannels

˚C%RH

VKVAmmkg

PTP control, CP controlUp to 6 axes simultaneously, and

up to 8 axes for additional axis control64bit RISC/DSP

MELFA-BASIC IVTeaching method, MDI method

2,5005,000

8832/32 (up to 256/256 when using the optional, additional I/O unit)Assigned from general-purpose I/O (one point, "STOP," is fixed)8 inputs/0 output (8/8 when the pneumatic hand interface is used)

1 (support 2 contacts)1 (support 2 contacts)1 (support 2 contacts)

1 (for connecting a personal computer, vision sensor etc.)1 (for connecting a teaching pendant)

1 (for connecting a pneumatic hand interface)

1 (for connecting an optional memory cassette)1 (for connecting a parallel I/O unit)

0 to 4045 to 85

100 or less (D-class grounding)

CR3-535M CR2B-574

Compact, with Greater Speed, Higher Payload, and Amazing RigidityEven more

450

380 3.2

(75)

550

625

550

(65)

615

420(15) (15) (40.5)

(50)(35)

100

(67)

(45)

(19.5)320380

Eyebolt 2-M10

Dimensions at Castor Wheel Specification (Special Specification at Shipment)

Controller External Dimension Diagram

Robot Arm External Dimension/Movement Range Diagrams

Specification

Features

RV-6S/6SC RV-6SL/6SLC RV-12S/12SC RV-12SL/12SLC

Common PartsRV-6S/6SL Series

Common PartsRV-12S/12SL Series

TypeMaximum load massReachEnvironment specificationStandard classificationConnected controller

RV-6S RV-6SL RV-6SC RV-6SLC RV-12S RV-12SL RV-12SC RV-12SLC

696mmIP65 (J4 to J6) IP54 (J1 to J3)

Standard modelClean class 10 (0.3 µmm)

Special specification modelClean class 10 (0.3 µmm)

Special specification model

902mm 695mm 901mm 1086mm 1385mm 1086mm 1385mm

CR3-535M (vertical type, dust-proof specification IP54), CR2B-574 (horizontal installation type, open structure IP20) *1

6kg 12kg

CR3-535M (vertical type, dust-proof specification IP54)

*1: Select either one of the controller types according to the purpose.

Model Structure

Fastest in the class

High load capacity and rigidity

Accommodates complex operationsthrough a variety of functions

Speedy

Strong

Specialist

RV-6S RV-6SL RV-12S RV-12SL

CR3-535M CR2B-574

Posture: J1=J2=J4=J5=J6=0˚, J3=90

97 670

200 or more

P-point trajectory 928 457 317 768

B

A

P

690 470

716

1685

560

450

854

8058

5 322

Flange downward limit(two-dot chain line)

R560

R560

A

B

P

P-point trajectory

R536100˚130

40˚

70˚

R355

R536

R536

R266

R936

R400 R

400

R673R307

R675

R675

R1235

R467

130˚

40˚

70˚

100˚

15097 530

670 416 205 581

200 or more

569 349 Flange downward limit(two-dot chain line)

150

*

341 2344775 20

93

5040

*

201 23447

75 20

93 5040

100

150

155 27

025

0

125250150155

View B Rear Surface Diagram; Installation Dimension Detail

96

115

122 20

416

0

102.5205

140115

View B Rear Surface Diagram; Installation Dimension Detail

View A Mechanical Interface

45˚4-M6 screwdepth 9

+0.012 0 depth 9

+0.021 0 depth 9.5 0-0.039depth 8

View A Mechanical Interface

45˚4-M5 screwdepth 9

+0.012 0 depth 5

+0.021 0 depth 7.5 0-0.039 depth 6.5

170˚170˚

170˚

170˚

170˚

170˚

R1085

R138

5

R457

R317

170˚170˚

89

130

R786

R108

6

R416

R205

89

130

215

230230

164161

(*1)

1386

8045

040

0

156

646

784

343

215161

164

4-M5 screw

400

310400460

4-M4 screw15 153

(24)45

837

2

333

20

400

1645

540

115

185

200

(36)

7

45

38

7126

0

Op

erat

ing

ran

ge

Max

imum

sp

eed

P-point trajectory:Reverse range (two-dot chain line)

P-point trajectory:Front range (solid line)

P-point trajectory:Reverse range (two-dot chain line)

P-point trajectory:Front range (solid line)

Installationreferencesurface

Inst

alla

tion

refe

renc

esu

rface

Installationreferencesurface

Inst

alla

tion

refe

renc

esu

rface

Fastest robots in their class with composite speeds up to 9.6 m/s (RV-12S)It is possible to improve tact time and perform multiple, complex operations in one station.High payload capacity up to 12 kg (26.4 lbs.)A high payload capacity was achieved by incorporating hollow-structure motors, specifically designed for robot applications. More sophisticated, complex end of arm tooling is also supported.High Precision Motion ControlImproved motion control through the use of a rigid arm design, and forward feed optimal trajectory control.Hardened to Withstand Environmental Conditions - [arm IP65; body IP54]The rotating joints and reduction gears are sealed within the motor's hollow structure, allowing the S-Series robots to be used in almost any environmental condition for a multitude of applications.Space SavingBy incorporating the reduction gears and bearings within the hollow structure of the motors, incredible space savings were realized making the S-series our most compact robots yet.SophisticatedWith true multi-tasking capability, additional axis control, and many other features, the robots are ready for any task.

[New] Impact Detection function - damage to peripheral devices are minimized[New] Position Restoration function - less time required for start-up, adjustment and maintenance tasks[New] Maintenance Forecast function: Notifies you when maintenance is due

Fail safe brakes at all axes ensure the robot stays in place when the power is off.Redundant emergency stop breakers are provided for safe, efficient operation.

Programming and operations are common for Mitsubishi’s entire range of robots, from 1 kg payload capacity through 150 kg payload capacity, making the S-series easy to use and maintain.

* indicates service screw holes for tooling (M4 6 places). * indicates service screw holes for tooling (M4 x 6 places). * indicates service screw holes for tooling (M4 6 places). * indicates service screw holes for tooling (M4 6 places).

Posture: J1=J2=J4=J5=J6=0˚, J3=90Opening angle limit of the rear surface areaIf | J1 | 60˚ and J2 -95, then J3 50˚ (*1)

Robot Body ControllerRV-6S/6SC

280+315696

285 (-107 to +166)

401321401

Approx. 9300Order of 0.4 seconds

±0.02

Approx. 58

RV-6SL/6SLC

380+425902

295 (-129 to +166)

250267267

Approx. 8500Order of 0.6 seconds

±0.02

Approx. 60

RV-12S/12SC

400+5301086

276230267

Approx. 9600Order of 0.7 seconds

±0.05

Approx. 93

RV-12SL/12SLC

560+6701385

230172200

Approx. 9500Order of 0.7 seconds

±0.05

Approx. 98

12 (10)

230 (-100 to +130)290 (+160 to -130)

375

Primary: 6 x 2, Secondary: 6 x 8

7 m (fixed on the controller side)

6 (5)

227 (-92 to +135)

450

Primary: 6 x 2, Secondary: 4 x 8

5 m (connector at both ends)

2 (for connecting optional extensions)

1 (for connecting additional axes)

3-phase, AC 180 to 2533.0 (excluding inrush current)

450(W) x 380(D) x 625(H)Approx. 60

Self-contained floor type/closed structure [IP54]

3 (for connecting optional extensions)0 (the optional additional axis

interface is used for connection)

Single phase, AC 180-2532.0 (excluding inrush current)

460(W) x 400(D) x 200(H)Approx. 20

Self-contained floor type/closed structure [IP20]

Vertical multiple-joint type6

AC servo motor (brakes for all axes)Absolute encoder

340 (±170), can be limited after shipment (in 45˚ intervals)

320 (±160)240 (±120)720 (±360)

352

660

0 to 40

8 input points/8 output points (No.2 arm)

Installation on floor, hanging (hanging on wall *6)

IP65 (J4 to J6) IP54 (J1 to J3)

5H7

20H7 40H8

31.5

4- 9 installation hole 2- 6 hole( 8 prepared hole for positioning pin)

25H750H8

6H7

40

4- 14 installation hole2- 6 hole( 8 prepared hole for positioning pin)

IP65 (J4 to J6) IP54 (J1 to J3)Standard model

2 x 2- 15 hole

*2: The maximum load capacity is the maximum mass capacity when the wrist flange is pointing downward ( 10˚).*3: Value at the hand flange surface when all the axes are combined*4: Value at a load of 1 kg for RV-6S and at a load of 5 kg for RV-12S when the robot reciprocates 25 mm

vertically and 300 mm horizontally*5: To use the tool (hand) output, the (optional) pneumatic hand interface is required.*6: The movement range of the J1 axis is limited in the special specification that allows the robot to hang on a wall.

48

*

32

4337 50

265 60

162 165

204

162 165

204

48

*

80 20

155

4337

32

50

6080 20

92˚

R287 R280

Opening angle limit (*2)

Opening angle limit (*3)

Opening angle limit (*1)

The area limited with (*1), (*3)

The area limited with (*2), (*4)

Opening angle limit (*3)

Opening angle limit (*2)

Opening angle limit (*5)Opening angle limit (*1)

Opening angle limit (*4)

Opening angle limit (*5)

Opening angle limit (*4)

85 315 85308 238

Flange downward limit(two-dot chain line)

P

961

179

350 59

428

010

0

R173

R611

17˚

76˚

437 258444474

294 42

1

170˚170˚

R902

R732

R285

R185

P

85 425403

85333

R388100

380

1167

649

350

355

R817

R198

39˚

76˚

R437R270

R437

617 285 185 547

100

476R437

R380

170˚

170˚

170˚

170˚

R202

R526

R696

R258

Flange downward limit(two-dot chain line)

170˚170˚

92˚135˚

R28

0

R33

1

R33113

P-point trajectory:Reverse range (two-dot chain line)

P-point trajectory:Front range (solid line)

P-point trajectory:Reverse range (two-dot chain line)

P-point trajectory:Front range (solid line)

Posture: J1=J2=J4=J5=J6=0˚, J3=90Opening angle limit of the rear surface areaIf -45˚ J2 < 15˚, then J2 + J3 x 2 -200˚ (*1)If | J1 | 75˚ and J2 < -45˚, then J2 + J3 +8˚ (*2)If | J1 | > 75˚ and J2 < -45˚, then J2 + J3 -40˚ (*3)Opening angle limit of the front surface areaIf -105˚ J1 95˚ and J2 123˚, then J3 -40˚ (*4)If J1 < 105˚ and J1 > 95˚, then J2 110˚but if 85˚ J2 110˚, then J2 - J3 150˚ (*5)

Posture: J1=J2=J4=J5=J6=0˚, J3=90Opening angle limit of the rear surface areaIf -38˚ J2 < 4˚, then J2 + J3 x 2 -254˚ (*1)If | J1 | 70˚, -80˚ < J2 < -38˚, then J2 x 1.5 + J3 -165˚ (*2)If | J1 | 70˚, J2 < -80˚, then J2 + J3 -47˚ (*3)If | J1 | > 70˚, J2 < -38˚, then J2 + J3 x 2 -254˚ (*4)Opening angle limit of the front surface areaIf J1 < -120˚, J1 > 95˚, then J2 110˚ (*5)

1

2

3

4

5

6

Nektere normy popisujıcı chrakterizaci presnosti robotujsou:

• ANSI/RIA R15.05-1-1990 (R1999) American NationalStandard for Industrial Robots and Robot Systems -Point-to-Point and Static Performance Characteristics- Eval Approved September 13, 1989, reaffirmed August5, 1999. 36 pages.

This standard is intended to facilitate understandingbetween manufacturers and users of industrial robots.The standard defines the most important performancecriteria and a method for evaluating these criteria.Included in the test method are performance classes,standard test paths and standard test loads. The pur-pose is to provide meaningful technical information thatrobot users can apply in the selection of the proper ro-bot for their specific application.

• ANSI/RIA R15.05-2-1992 (R1999) American NationalStandard for Industrial Robots and Robot Systems -Path-Related and Dynamic Performance Characteris-tics - Eval Approved September 14, 1992, ReaffirmedAugust 5, 1999. 45 pages.

This standard is intended to facilitate understandingbetween manufacturers and users of industrial robots.

The standard defines the fundamental dynamic path-related performance characteristics and provides a me-thod to quantify dynamic performance. Included inthe test method are performance classes, standard testpaths and standard test loads. The purpose is to pro-vide meaningful technical information that robot userscan apply in the selection of the proper robot for theirspecific application.

• ANSI/RIA R15.05-3-1992 (R1999) American NationalStandard for Industrial Robots and Robot Systems -Guidelines for Reliability Acceptance Testing ApprovedOctober 16, 1992, Reaffirmed August 5, 1999. 6 pages.

This standard provides the minimum testing require-ments that will qualify a newly manufactured of a newlyrebuilt industrial robot to be placed into use withoutadditional testing. The purpose of this standard is toprovide assurance, through testing, that infant morta-lity failures in industrial robots have been detected andcorrected by the manufacturer at their facility prior toshipment to a user. These tests may be reproduced bythe user if desired.

• ISO 9283:1998 Manipulating Industrial Robots - Perfor-mance Criteria and Related Test Methods. PublicationDate: Apr 1, 1998

ROBOTICS: Vladimır Smutny Slide 4, Page 3

Page 4: Robotika - CMPcmp.felk.cvut.cz/cmp/courses/ROB/roblec/rizeni-notecz.pdf · ízení robot· Robotika ízení robot· Vladimír Smutný Centrum strojového vnímání eský institut

Řízení robotů – Negeometrické parametry modelu:

� poddajnost (compliance), opak tuhosti (stifness),� vůle v převodech (gear backlash),� rozlišení snímačů (encoder resolution),� teplotní roztažnost (temperature-related expansion),� vůle ve vedeních (linkage wobble).

1

2

3

4

5

6

ROBOTICS: Vladimır Smutny Slide 5, Page 4

Page 5: Robotika - CMPcmp.felk.cvut.cz/cmp/courses/ROB/roblec/rizeni-notecz.pdf · ízení robot· Robotika ízení robot· Vladimír Smutný Centrum strojového vnímání eský institut

Řízení robotů – Geometrické parametry modelu:

� rozměry ramen,� úhly mezi jednotlivými klouby,� poloha nuly snímačů.

Jestliže máme např. polohu chapadla vyjádřenu jako funkci parametrů modelu,můžeme derivováním získat citlivosti polohy chapadla na změny parametrů. Proodhad chyby parametrů pak můžeme odhadnout výslednou chybu polohy chapadla aodvodit z ní (případně optimalizovat) přesnost manipulátoru.

1

2

3

4

5

6

ROBOTICS: Vladimır Smutny Slide 6, Page 5


Recommended