+ All Categories
Home > Documents > Struktury analogových IO -- vnitøní zapojení OZhippo.feld.cvut.cz/vyuka/elo/pr7/oz.pdfStruktury...

Struktury analogových IO -- vnitøní zapojení OZhippo.feld.cvut.cz/vyuka/elo/pr7/oz.pdfStruktury...

Date post: 26-Jun-2020
Category:
Upload: others
View: 9 times
Download: 0 times
Share this document with a friend
27
Struktury analogových IO – vnitřní zapojení OZ Jiří Hospodka Elektrické obvody – analýza a simulace katedra Teorie obvodů, 804/B3 ČVUT FEL 7. přednáška Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 1 / 18
Transcript

Struktury analogových IO – vnitřní zapojení OZ

Jiří Hospodka

Elektrické obvody – analýza a simulace

katedra Teorie obvodů, 804/B3ČVUT FEL

7. přednáška

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 1 / 18

Struktury analogových IO – vnitřní zapojení OZ

µA741, µA741YGENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000

2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

AVAILABLE OPTIONS

PACKAGED DEVICESCHIP

TASMALL

OUTLINE(D)

CHIPCARRIER

(FK)

CERAMICDIP(J)

CERAMICDIP(JG)

PLASTICDIP(P)

TSSOP(PW)

FLATPACK

(U)

CHIPFORM

(Y)

0°C to 70°C µA741CD µA741CP µA741CPW µA741Y

–40°C to 85°C µA741ID µA741IP

–55°C to 125°C µA741MFK µA741MJ µA741MJG µA741MU

The D package is available taped and reeled. Add the suffix R (e.g., µA741CDR).

schematic

IN–

IN+

VCC+

VCC–

OUT

OFFSET N1

OFFSET N2

Transistors 22Resistors 11Diode 1Capacitor 1

Component Count

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 2 / 18

Základní koncepce OZ

RiI22I1

T1 T2

T3 T4

T5

T6

T7

T8Rz

+Ucc

−Ucc

+

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 3 / 18

Základní koncepce OZ – rozdělení na bloky

RiI22I1

T1 T2

T3 T4

T5

T6

T7

T8Rz

+Ucc

−Ucc

+

u1

uoA = uiBuoB = uiC

u2

Vstupní část , rozkmitový a koncový stupeň

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 4 / 18

Základní koncepce OZ – nastavení pracovních bodů

RiI22I1

T1 T2

T3 T4

T5

T6

T7

T8Rz

+Ucc

−Ucc

+

I2

I1 I1

I1βF

I1βF

αF I1I2β2F

I2βF

Io0

Io0

Io0βF

Io0βF

0

αF I12αF I12+βF

Iin = 80 nA, Ioutmax = 20mA, βF = β = 80, UA = 100V, Rz = 2 kΩ

I1 = βF Iin, I2 = Ioutmax/βF , Io0 ≈ I2.

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 5 / 18

Základní koncepce OZ – nastavení pracovních bodů

RiI22I1

T1 T2

T3 T4

T5

T6

T7

T8Rz

+Ucc

−Ucc

+

I2

I1 I1

I1βF

I1βF

αF I1I2β2F

I2βF

Io0

Io0

Io0βF

Io0βF

0

αF I12αF I12+βF

Iin = 80 nA, Ioutmax = 20mA, βF = β = 80, UA = 100V, Rz = 2 kΩ

I1 = βF Iin, I2 = Ioutmax/βF , Io0 ≈ I2.

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 5 / 18

Metoda dělení řetězce

gmAuiAuiA roAriA uoA

A

gmBuiB

B

u1 uiB riB

. . .

. . .

. . .

. . .

roB uoB

B

gmC uiCuiC roCriC uoC

C

Rz u2

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 6 / 18

Analýza základní koncepce OZ – vstupní díl

Diferenční zesílení

2I1

T1 T2

T3 T4

+Ucc

−Ucc

+

u1

uoA

riA

roA

u12

−u12

riBre3||rp4 uoA

−u12

u12

re1 re2

rzAube4 gmube4

ie1 ie2

αie2αie1

i1

≡ 0Ro

ioA

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ – vstupní díl

Diferenční zesílení

2I1

T1 T2

T3 T4

+Ucc

−Ucc

+

u1

uoA

riA

roA

u12

−u12

riBre3||rp4 uoA

−u12

u12

re1 re2

rzAube4 gmube4

ie1 ie2

αie2αie1

i1

≡ 0Ro

ioA

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ – vstupní díl

Diferenční zesílení

re3||rp4 uoA

−u12

u12

re1 re2

rzAube4 gmube4

ie1 ie2

αie2αie1

i1

≡ 0Ro

ioA

re1 = re2 = re

ie1 = ie2 = ie =u12re

gmube4 = αie1β

β + 2.=

.= αie1 = αie

ioA = −2αie

uoA = −2αu12rerzA =

= −gmrzA u1 = AuA u1

rzA = (ro2||ro4)||riB

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ – vstupní díl

Diferenční zesílení

re3||rp4 uoA

−u12

u12

re1 re2

rzAube4 gmube4

ie1 ie2

αie2αie1

i1

≡ 0Ro

ioA

re1 = re2 = re

ie1 = ie2 = ie =u12re

gmube4 = αie1β

β + 2.=

.= αie1 = αie

ioA = −2αie

uoA = −2αu12rerzA =

= −gmrzA u1 = AuA u1

rzA = (ro2||ro4)||riB

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ – vstupní díl

Souhlasné zesílení – ideové schéma

re3||rp4 uoA

us

re1 re2

rzAube4 gmube4

ie1 ie2

αie2αie1

i1

Ro

ioA

ie1 = ie2 = ie =us

re + 2Ropokud gmube4 = ie ,

pak ioA = 0 a As = 0!

zde: gmube4 = αie1β

β + 2

uoA = ioArzA = · · ·.= − usRoβrzA

As =uoAus

.= − rzARoβ

, Ro re

H =∣∣∣∣AuAAs

∣∣∣∣ .= gmRoβ

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ – vstupní díl

Souhlasné zesílení – ideové schéma

re3||rp4 uoA

us

re1 re2

rzAube4 gmube4

ie1 ie2

αie2αie1

i1

Ro

ioA

ie1 = ie2 = ie =us

re + 2Ropokud gmube4 = ie ,

pak ioA = 0 a As = 0!

zde: gmube4 = αie1β

β + 2

uoA = ioArzA = · · ·.= − usRoβrzA

As =uoAus

.= − rzARoβ

, Ro re

H =∣∣∣∣AuAAs

∣∣∣∣ .= gmRoβ

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ – vstupní díl

Souhlasné zesílení – kompletní zapojení

re3||rp4

us

re1 re2

ube4 gmube4

ie1 ie2

αie2αie1

is

Ro

ro1ro2

uoArzA

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ – rozkmitový stupeň

RiI2

T5

T6

+Ucc

−Ucc

uiBuoB

riB roB

riC

roA

riB = (β + 1)(re5 + rπ6) == (β + 1)2rπ6 = 2rπ5

AuB = −gm6rzB2

rzB = roB ||riC = (Ri ||ro6)||riCRi ≈ ro6

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 8 / 18

Analýza základní koncepce OZ – koncový stupeň

T7

T8Rz

+Ucc

−Ucc

uiC

u2

riC

roC

roB

riC = (β + 1)Rz

AuC =Rz

Rz + rek.= 1, rek = re7 = re8

roC = rek +roB

β + 1.=roB

β + 1

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 9 / 18

Modelový příklad výpočtu zesílení OZ

β = 80

UA = 100V

Rz = 2kΩ

RiI22I1

T1 T2

T3 T4

T5

T6

T7

T8Rz

+Ucc

−Ucc

+

u1

uoA = uiBuoB = uiC

u2

I1 = 6, 4µA ⇒ re1.= 4kΩ, rπ1

.= 300kΩ, roA

.= 8MΩ

I2 = 250µA ⇒ riB.= 1, 3MΩ, roB

.= 200 kΩ, riC

.= 160 kΩ

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 10 / 18

Modelový příklad výpočtu zesílení OZ

β = 80

UA = 100V

Rz = 2kΩ

RiI22I1

T1 T2

T3 T4

T5

T6

T7

T8Rz

+Ucc

−Ucc

+

u1

uoA = uiBuoB = uiC

u2

AuA =uoAu1= −gm(roA ||riB )

.= −280,AuB =

uoBuiB= −gm6(roB ||riC )

2.= −890,

AuC.= 1, Au = AuAAuBAuC

.= 250 000.

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 10 / 18

Modelový příklad výpočtu zesílení OZ

β = 80

UA = 100V

Rz = 2kΩ

RiI22I1

T1 T2

T3 T4

T5

T6

T7

T8Rz

+Ucc

−Ucc

+

u1

uoA = uiBuoB = uiC

u2

AuA =uoAu1= −gm(roA ||riB )

.= −280,AuB =

uoBuiB= −gm6(roB ||riC )

2.= −890,

Rz →∞ ⇒ AuB = 2000 ! a Au.= 560 000 oproti původním 250 000.

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 10 / 18

Vnitřní struktura IO, operačního zesilovače TL071

TL071, TL071A, TL071B, TL072TL072A, TL072B, TL074, TL074A, TL074B

LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

S LOS 080D ± S E P T E MB E R 1978 ± R E V IS E D AUG US T 1996

3P OS T OF F IC E B OX 655303 ω DALLAS , T E XAS 75265

s c hematic (eac h amplifier)

C 1

V C C +

IN +

V C C -

1080 Ω 1080 Ω

IN -

T L 071 Only

64 Ω128 Ω

64 Ω

All component values shown are nominal.

OF F S E TNUL L(N1)

OF F S E TNUL L(N2)

OUT

18 pF

C OMP ONE NT C OUNT ²

C OMP ONE NTT Y P E

T L 071 T L 072 T L 074

R es istors 11 22 44R es istorsTrans istors

1114

2228

4456

J F E T 2 4 6Diodes 1 2 4C apacitors 1 2 4epi-F E T 1 2 4

² Includes bias and trim circuitry

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 11 / 18

Vnitřní struktura IO, OZ LM741LM741Operational AmplifierGeneral DescriptionThe LM741 series are general purpose operational amplifi-ers which feature improved performance over industry stan-dards like the LM709. They are direct, plug-in replacementsfor the 709C, LM201, MC1439 and 748 in most applications.

The amplifiers offer many features which make their applica-tion nearly foolproof: overload protection on the input andoutput, no latch-up when the common mode range is ex-ceeded, as well as freedom from oscillations.

The LM741C is identical to the LM741/LM741A except thatthe LM741C has their performance guaranteed over a 0˚C to+70˚C temperature range, instead of −55˚C to +125˚C.

Connection Diagrams

Typical Application

Metal Can Package

DS009341-2

Note 1: LM741H is available per JM38510/10101

Order Number LM741H, LM741H/883 (Note 1),LM741AH/883 or LM741CH

See NS Package Number H08C

Dual-In-Line or S.O. Package

DS009341-3

Order Number LM741J, LM741J/883, LM741CNSee NS Package Number J08A, M08A or N08E

Ceramic Flatpak

DS009341-6

Order Number LM741W/883See NS Package Number W10A

Offset Nulling Circuit

DS009341-7

August 2000

LM741

OperationalA

mplifier

© 2000 National Semiconductor Corporation DS009341 www.national.com

Electrical Characteristics (Note 5) (Continued)

Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and Tj max. (listed under “Absolute Maximum Rat-ings”). Tj = TA + (θjA PD).

Thermal Resistance Cerdip (J) DIP (N) HO8 (H) SO-8 (M)

θjA (Junction to Ambient) 100˚C/W 100˚C/W 170˚C/W 195˚C/W

θjC (Junction to Case) N/A N/A 25˚C/W N/A

Note 4: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 5: Unless otherwise specified, these specifications apply for VS = ±15V, −55˚C ≤ TA ≤ +125˚C (LM741/LM741A). For the LM741C/LM741E, these specifica-tions are limited to 0˚C ≤ TA ≤ +70˚C.

Note 6: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).

Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

Note 8: Human body model, 1.5 kΩ in series with 100 pF.

Schematic Diagram

DS009341-1

LM74

1

www.national.com 4

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 12 / 18

Vnitřní struktura IO, OZ µA741

µA741, µA741YGENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000

2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

AVAILABLE OPTIONS

PACKAGED DEVICESCHIP

TASMALL

OUTLINE(D)

CHIPCARRIER

(FK)

CERAMICDIP(J)

CERAMICDIP(JG)

PLASTICDIP(P)

TSSOP(PW)

FLATPACK

(U)

CHIPFORM

(Y)

0°C to 70°C µA741CD µA741CP µA741CPW µA741Y

–40°C to 85°C µA741ID µA741IP

–55°C to 125°C µA741MFK µA741MJ µA741MJG µA741MU

The D package is available taped and reeled. Add the suffix R (e.g., µA741CDR).

schematic

IN–

IN+

VCC+

VCC–

OUT

OFFSET N1

OFFSET N2

Transistors 22Resistors 11Diode 1Capacitor 1

Component CountµA741, µA741YGENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000

2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

AVAILABLE OPTIONS

PACKAGED DEVICESCHIP

TASMALL

OUTLINE(D)

CHIPCARRIER

(FK)

CERAMICDIP(J)

CERAMICDIP(JG)

PLASTICDIP(P)

TSSOP(PW)

FLATPACK

(U)

CHIPFORM

(Y)

0°C to 70°C µA741CD µA741CP µA741CPW µA741Y

–40°C to 85°C µA741ID µA741IP

–55°C to 125°C µA741MFK µA741MJ µA741MJG µA741MU

The D package is available taped and reeled. Add the suffix R (e.g., µA741CDR).

schematic

IN–

IN+

VCC+

VCC–

OUT

OFFSET N1

OFFSET N2

Transistors 22Resistors 11Diode 1Capacitor 1

Component Count

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 13 / 18

Vnitřní struktura IO, operačního zesilovače OP07

REV. A

Information furnished by Analog Devices is believed to be accurate andreliable. However, no responsibility is assumed by Analog Devices for itsuse, nor for any infringements of patents or other rights of third parties thatmay result from its use. No license is granted by implication or otherwiseunder any patent or patent rights of Analog Devices.

aOP07

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700 www.analog.com

Fax: 781/326-8703 © Analog Devices, Inc., 2002

Ultralow Offset VoltageOperational Amplifiers

FEATURES

Low VOS: 75 V Max

Low VOS Drift: 1.3 V/C Max

Ultra-Stable vs. Time: 1.5 V/Month Max

Low Noise: 0.6 V p-p Max

Wide Input Voltage Range: 14 V

Wide Supply Voltage Range: 3 V to 18 V

Fits 725,108A/308A, 741, AD510 Sockets

125C Temperature-Tested Dice

APPLICATIONS

Wireless Base Station Control Circuits

Optical Network Control Circuits

Instrumentation

Sensors and Controls

Thermocouples

RTDs

Strain Bridges

Shunt Current Measurements

Precision Filters

GENERAL DESCRIPTIONThe OP07 has very low input offset voltage (75 µV max forOP07E) which is obtained by trimming at the wafer stage. Theselow offset voltages generally eliminate any need for external null-ing. The OP07 also features low input bias current (±4 nA forOP07E) and high open-loop gain (200 V/mV for OP07E). Thelow offsets and high open-loop gain make the OP07 particularlyuseful for high-gain instrumentation applications.

The wide input voltage range of ±13 V minimum combined withhigh CMRR of 106 dB (OP07E) and high input impedace pro-vides high accuracy in the noninverting circuit configuration.Excellent linearity and gain accuracy can be maintained even at

high closed-loop gains. Stability of offsets and gain with time orvariations in temperature is excellent. The accuracy and stabilityof the OP07, even at high gain, combined with the freedomfrom external nulling have made the OP07 an industry standardfor instrumentation applications.

The OP07 is available in two standard performance grades. TheOP07E is specified for operation over the 0°C to 70°C range, andOP07C over the –40°C to +85°C temperature range.

The OP07 is available in epoxy 8-lead Mini-DIP and 8-lead SOIC.It is a direct replacement for 725,108A, and OP05 amplifiers;741-types may be directly replaced by removing the 741’s nullingpotentiometer. For improved specifications, see the OP177 orOP1177. For ceramic DIP and TO-99 packages and standardmicro circuit (SMD) versions, see the OP77.

Figure 1. Simplified Schematic

PIN CONNECTIONS

Epoxy Mini-Dip (P-Suffix)8-Pin SO (S-Suffix)

8

7

6

5

1

2

3

4

NC = NO CONNECT

VOS TRIM

–IN

+IN

VOS TRIM

V+

OUT

NCV–

OP07

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 14 / 18

Vstupní obvody operačního zesilovače OP07

REV. A

Information furnished by Analog Devices is believed to be accurate andreliable. However, no responsibility is assumed by Analog Devices for itsuse, nor for any infringements of patents or other rights of third parties thatmay result from its use. No license is granted by implication or otherwiseunder any patent or patent rights of Analog Devices.

aOP07

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700 www.analog.com

Fax: 781/326-8703 © Analog Devices, Inc., 2002

Ultralow Offset VoltageOperational Amplifiers

FEATURES

Low VOS: 75 V Max

Low VOS Drift: 1.3 V/C Max

Ultra-Stable vs. Time: 1.5 V/Month Max

Low Noise: 0.6 V p-p Max

Wide Input Voltage Range: 14 V

Wide Supply Voltage Range: 3 V to 18 V

Fits 725,108A/308A, 741, AD510 Sockets

125C Temperature-Tested Dice

APPLICATIONS

Wireless Base Station Control Circuits

Optical Network Control Circuits

Instrumentation

Sensors and Controls

Thermocouples

RTDs

Strain Bridges

Shunt Current Measurements

Precision Filters

GENERAL DESCRIPTIONThe OP07 has very low input offset voltage (75 µV max forOP07E) which is obtained by trimming at the wafer stage. Theselow offset voltages generally eliminate any need for external null-ing. The OP07 also features low input bias current (±4 nA forOP07E) and high open-loop gain (200 V/mV for OP07E). Thelow offsets and high open-loop gain make the OP07 particularlyuseful for high-gain instrumentation applications.

The wide input voltage range of ±13 V minimum combined withhigh CMRR of 106 dB (OP07E) and high input impedace pro-vides high accuracy in the noninverting circuit configuration.Excellent linearity and gain accuracy can be maintained even at

high closed-loop gains. Stability of offsets and gain with time orvariations in temperature is excellent. The accuracy and stabilityof the OP07, even at high gain, combined with the freedomfrom external nulling have made the OP07 an industry standardfor instrumentation applications.

The OP07 is available in two standard performance grades. TheOP07E is specified for operation over the 0°C to 70°C range, andOP07C over the –40°C to +85°C temperature range.

The OP07 is available in epoxy 8-lead Mini-DIP and 8-lead SOIC.It is a direct replacement for 725,108A, and OP05 amplifiers;741-types may be directly replaced by removing the 741’s nullingpotentiometer. For improved specifications, see the OP177 orOP1177. For ceramic DIP and TO-99 packages and standardmicro circuit (SMD) versions, see the OP77.

Figure 1. Simplified Schematic

PIN CONNECTIONS

Epoxy Mini-Dip (P-Suffix)8-Pin SO (S-Suffix)

8

7

6

5

1

2

3

4

NC = NO CONNECT

VOS TRIM

–IN

+IN

VOS TRIM

V+

OUT

NCV–

OP07

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 15 / 18

Vnitřní struktura IO, operačního zesilovače OP50

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 16 / 18

Vnitřní struktura IO, oeračního zesilovače LM358

Typical Single-Supply Applications (V+ = 5.0 VDC) (Continued)

Using Symmetrical Amplifiers toReduce Input Current (General Concept)

00778732

Schematic Diagram (Each Amplifier)

00778703

LM15

8/LM

258/

LM35

8/LM

2904

www.national.com 20

Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 17 / 18

Děkuji za pozornost.


Recommended