Uhlíkové nanostruktury-materiály pro budoucnost? y ypnanosystemy.upol.cz/upload/11/kalbac.pdf ·...

Post on 09-Apr-2020

1 views 0 download

transcript

Uhlíkové nanostruktury-materiály pro budoucnost?

Martin Kalbáč

y y p

Martin Kalbáč

Ústav fyzikální chemie J. Heyrovského, Praha

IFW Dresden Massachusetts Institute of Technology (MIT), Cambridge,USA

Forms of carbon

NanotubesNanotubes

Fullerenes

Graphene

Diamond Graphite

Graphene

Content:1) Grafen

2) Fullereny

3) Nanotuby

4) Peapody

5) DWCNTs

6) Spektroelektrochemie

Forms of carbon

GraphiteGraphite

Forms of carbon

GrapheneGraphene

Graphene –applications

Ultrathin conductive films Graphene Used To Create W ld' S ll t T i tWorld's Smallest Transistor

Liquid Crystal Device with electrodes made of graphene with different voltages applied. The overall width of the insert image is 30 microns. (Image: Mesoscopic Physics Group, University of Manchester)

Dr Ponomarenko, who carried out this work, shows his research sample: graphene quantum dots on a chip.

Graphene –applications

Single molecule gas detectionSingle molecule gas detection

Ultracapacitors

Spin transport

Schematic of the resonator. The graphene is in contact with a gold electrode that can be used to electrostatically actuate the resonator. A red laser is used to detect the motion of the resonator by laser interferometry.

Forms of carbon

GrapheneGraphene

≈ £ 0.70 per μm2

≈ £ 700 000 per mm2p

Forms of carbon

GrapheneGraphene

Forms of carbon

GrapheneGraphene

Chemical vapor deposition (CVD)

Quartz boatQuartz boatCu or Ni substrate

Quartz tube

Electric furnace

Quartz tube

Electric furnace

Ethanol tank

Ar/H2

Aror Ethanol tankEthanol tankArorH2/CH4

Hot bathHot bathHot bath

Chemical vapor deposition (CVD)

Transfer of graphene

Transfer of graphene

Chemical vapor deposition (CVD)

Expo '67 American Pavillion by R. Buckminster Fuller, on Ile Sainte-Hélène, Montreal

C acc to IUPAC:C60 acc. to IUPAC:

Hentriacontacyclo[29.29.0.0.2,14.03,12.04,59.05,10.06,58.07,55 08,53 09,21 011,20 013,18 015,30 016,28 017,25 019,24 022,52 02.0 .0 .0 .0 .0 .0 .0 .0 .0 .03.50.026,49.027,47.029,45.032,44.033,60.034,57.035,43.036,56.037,41.038,54.039,51.040,48.042,46]hexaconta-1 3 5(10) 6 8 11 13(18) 14 16 19 21 23 25 27 29(45)1,3,5(10),6,8,11,13(18),14,16,19,21,23,25,27,29(45), 30,32(44),33,35(43),36,38(54),39(51),40(48),41,46,49,52,55,57, 59-triaconten

Kroto, Allaf, Balm, Chem. Rev. 91, 1991, 1213

Fullerene galleryFullerene gallery

C60 C70 C78 C82C76

La@C84

Sc3N@C84

Endohedral Fullerene M@C84

Carbon nanotubes

Rolling of SWCNTRolling of SWCNT

-zag

zig-

arm-chair

Carbon nanotubes (CNT)

MWCNTSWCNT

DWDWCNT

SWCNT BundlesSWCNT Bundles

SWCNT BundlesSWCNT Bundles

Single wall carbon nanotubes (SWCNT)

• Size: Nanostructures with dimensionsof ~1 nm diameter (~10 atoms around

• Electronic Properties: Can be eithermetallic or semiconducting depending on

the cylinder)

• Physics: 1D density of electronic states. Single molecule Raman spectroscopy,

diameter and orientation of the hexagons

•Mechanical Properties: Very high strength. Good properties on both compression and

luminescence, and transport properties. extension.

Carbon nanotubes (CNT) mechanical propertiesCarbon nanotubes (CNT) mechanical properties

Fiber material

Specific density

E (TPa)

Strength (GPa)

Strain at break (%) y ( ) ( ) ( )

CNT 1.3 - 2 1 10-60 10

HS St l 7 8 0 2 4 1 10HS Steel 7.8 0.2 4.1 <10

CF-PAN 1.7 - 2 0.2 -0.6

1.7 - 5 0.3 - 2.4 0.6

Kevlar 49 1.4 0.13 3.6-4.1 2.8

Carbon nanotubes (CNT) mechanical propertiesCarbon nanotubes (CNT) mechanical properties

Single nanotube transistor

• Distinctive metallic and semiconducting

iIBM

transport properties

• Ballistic transport• Ballistic transport

• Extremely high y gcurrent carrying capacity

Chemical vapor deposition (CVD)

Quartz boatQuartz boat

Quartz tube

Electric furnace

Quartz tube

Electric furnace

Ethanol tank

Ar/H2

Aror Ethanol tankEthanol tank

Ar/H2

Aror

Hot bathHot bathHot bath

Quality vs. price

Purity of carbon nanotubes

Commercial „90% carbon purity“500 $ /gg

SWCNT from graphene

a1 6 a1Aa2

5 a5 a2Ch

BB

Chiral vector: Ch = na1 + ma2a1 , a2 …. Unit vectors of 2D-hexagonal lattice Chiral vector: Ch = 6a1 + 5a2a1 , a2 …. Unit vectors of 2D-hexagonal lattice

(6,5)1 , 2 g1 , 2 g

SWCNT from grapheneg p

Armchair nT(n=m) metal

Zig-zag nT(n-m) = 3i metal(n-m) ≠ 3i semicond.

Chiral nT(n m) = 3i metal(n-m) = 3i metal(n-m) ≠ 3i semicond.

Density of states (DOS) in SWCNT→Van Hove singularities

2.5

2.0

1.5

1.0(5 0)

Zig-zag tubes

2.5

2.0

1.5

1.0

(5,5)

(5 5)

Armchair tubes

2.5

2 0

0.5

0.0

-3 -2 -1 0 1 2 3

tom

/eV

)

(5,0)

2.5

0.5

0.0

-3 -2 -1 0 1 2 3

(5,5)

om/e

V)

2.0

1.5

1.0

0.5

0.0

S (s

tate

s/C

-at

(10,0)2.0

1.5

1.0

0.5

(10,10)(10,10)

(sta

tes/

C-a

t

-3 -2 -1 0 1 2 3

2.5

2.0

1.5

1 0

DO

S

(20,0)

2.5

2.0

1.5

1 0

-3 -2 -1 0 1 2 3

(20,20)(20,20)

DO

S

1.0

0.5

0.0

-3 -2 -1 0 1 2 3

Energy, eV

( , )1.0

0.5

0.0

-3 -2 -1 0 1 2 3

Energy, eV

ΔE of singularities vs. diameter of SWCNT (“Kataura graph”)

a2χ1.5

ergy

, eV

daE CC−=Δ 02χ

SWCNT d ≈ 1.1-1.4 nm

0.0

0.5

1.0Ene

(10,10)

arat

ion

(eV)

v 2→c

1.8-1.5

-1.0

-0.5

Ener

gy S

epa

vm1→cm

1

vm →cm2

vs3→cs3

0.7

1.2DOS

1.0

1.5

Ene

rgy,

eV

vs1→cs1

vs2→cs

2

-0.5

0.0

0.5

(11,9)

Nanotube diameter (nm)

(n, m) to (40,40) -1.5

-1.0

DOS

Vis/NIR spectrum of SWCNT/ITO

0.5

0.4vss

11→→ ccss11

vss22→→ ccss

22

vmm11→→ ccmm

110.3

0.2Abso

rban

ce vmm →→ ccmmhv

0.1

0.0ITOSWCNT

3.02.52.01.51.00.5Energy, eV

SWCNT Bundles

Sorting SWCNT

What is the Raman spectroscopy aboutp py

C. V. Raman

Resonance enhanced Raman spectroscopy

Approximately 1 in 107 photons is inelastically scattered

The signal is usally very weak

Approximately 1 in 107 photons is inelastically scattered

1) Use of lasers - intensive light2) Resonance enhancement2) Resonance enhancement

R h d R tResonance enhanced Raman spectroscopy

E1 V0

Virtual state

E0 V1Optical transition ?E0 V0

Optical transition ?

Resonance enhanced spectra102-104

Resonance Raman spectroscopy of SWCNT

2))(( γγ iEEEiEE

cIiiphLiiL −−+−−

=

EL - laser photon energyEii - optical transition energyEph - phonon energyγ damping constantγ - damping constant

Typical values for RBMEph ≈ 0.02 eVγ ≈ 0.05 eV

Raman spectrum of SWCNT

2.41 eV

1.83 eV

2.41 eV

TG

tens

ity, a

. u.

tens

ity, a

. u.

TG

Ram

an in

t

x 25x 5Ram

an in

t

G’RBM D

G’

28002700260025001600150014001300300250200150100

Raman shift, cm-128002700260025001600150014001300300250200150100

Raman shift, cm-1

Diameter = 234/ωRBM

Growth of CNT

Raman spectra of SWCNT, hvexc= 1.83 eV

x 1.5

y, a

.u.

man

inte

nsity Bundle

Ra

1640160015601520400350300250200150

Raman shift, cm-1

Creation of defects in SWCNT

RF Ar plasma

Individual SWCNT

Mask

SubstrateMask

Defective SWCNT

x 30

x103

ensi

ty, a

.u. D mode

x

Ram

an in

te

Pristine part

27202700268026601600150014001300220200180160140

Raman shift cm-1

Defective part

Diameter = 234/ωRBM

Raman shift, cm

Formation of fullerene peapod (C60@SWCNT)

C60 (g) Nanotube, optimum ∅ ≈1.36 nmFULLERENE PEAPODNanotube, optimum ∅ 1.36 nm

Dy3N@C80@SWCNT

Dy3N@C80@SWCNTDy3N@C80@SWCNT

Dysprosium (at approx. 154 eV) from EELS spectra

J.Cech, M. Kalbáč, S.A. Curran, D. Zhang, U. Dettlaff-Weglikowska, L. Dunsch, S. Yang and S. Roth: Physica E: Low-dimensional Systems and Nanostructures, in press (2006)

Distance (nm)

Raman spectra of Dy3N@C80@SWCNT hvexc= 1.91 eVy,

a. u

. in

tens

ity

Dy3N@C80@SWCNT

Ram

an

5Dy3N@C80

SWCNT

18001600140012001000800600400200Raman shift, cm -1

x 5

Double walled nanotubesRT

C60@SWCNT800 oC

1200 oC

DWCNT1000 oC

1200 oC

S. Bandow et al., Chem. Phys. Lett. 337 (2001) 48

Raman spectra of dry DWCNT, hvexc= 1.83 eV

sity

, a. u

. INNER TUBESOUTER TUBES

Ram

an in

tens

400350300250200150100Raman shift, cm -1

Double walled nanotubes from different peapod sources(The spectra are excited by 1.83 eV)

C78-DWCNT

a. u

.

C70-DWCNT

a. u

.

C60-DWCNT

a. u

.

Ram

an in

tens

ity, a

Ram

an in

tens

ity, a

Ram

an in

tens

ity, a

360340320300280260240Raman shift, cm -1360340320300280260240

Raman shift, cm -1360340320300280260240Raman shift, cm -1

Dy3N@C80-DWCNTLa@C82-DWCNTC84-DWCNT

nten

sity

, a. u

.

nten

sity

, a. u

.

nten

sity

, a. u

.

Ram

an in

360340320300280260240Raman shift, cm -1

Ram

an in

360340320300280260240Raman shift, cm -1

Ram

an in

360340320300280260240Raman shift, cm -1

In-situ spectroelectrochemistry

The change of potential

The change of potential

The change of electronic stateThe change of electronic state

The change of spectra

The change of spectra

Methods Materials

EPR UV-Vis-NIR

conducting polymersmonomers, oligomersUV Vis NIR

RamanFTIR

fullerenesCNT peapodspeapods

In-situ electrochemical doping of SWCNTanodic/cathodic= extraction/insertion of e-

OCPAn1An2OCPCat1Cat2

Fermi level

Fermi levelFermi level

Fermi level

Fermi level

Fermi level

Electrode

Vis-NIR spectra on ITO electrode of SWCNT(0 2 M LiClO + acetonitrile)(0.2 M LiClO4 + acetonitrile)

0.50

0.45

0.50

0.45

0.50

0.45

0.50

0.45

0.50

0.45

0.50

0.45

0.50

0.45

0.50

0.45

0.50

0.45CE WE

RE

0.0

0.5

1.0

1.5

Ener

gy, e

V

0.40

0.35

bsor

banc

e (A

) 0.40

0.35

bsor

banc

e (A

) 0.40

0.35

bsor

banc

e (A

) 0.40

0.35

bsor

banc

e (A

) 0.40

0.35

bsor

banc

e (A

) 0.40

0.35

bsor

banc

e (A

) 0.40

0.35

bsor

banc

e (A

) 0.40

0.35

bsor

banc

e (A

) 0.40

0.35

bsor

banc

e (A

)

hv -1.5

-1.0

-0.5

DOS

0.30

0.25

A

0.30

0.25

A

0.30

0.25

A

0.30

0.25

A

0.30

0.25

A

0.30

0.25

A

0.30

0.25

A

0.30

0.25

A

0.30

0.25

A

ITOsample 0.0

0.5

1.0

1.5

Ene

rgy,

eV

0.20

4.03.53.02.52.01.51.00.5Energy, eV

0.20

4.03.53.02.52.01.51.00.5Energy, eV

0.20

4.03.53.02.52.01.51.00.5Energy, eV

0.20

4.03.53.02.52.01.51.00.5Energy, eV

0.20

4.03.53.02.52.01.51.00.5Energy, eV

0.20

4.03.53.02.52.01.51.00.5Energy, eV

0.20

4.03.53.02.52.01.51.00.5Energy, eV

0.20

4.03.53.02.52.01.51.00.5Energy, eV

0.20

4.03.53.02.52.01.51.00.5Energy, eV

-1.5

-1.0

-0.5

DOS

E = 0.0VE = 0.2VE = 0.4VE = 0.6VE = 0.8VE = 1.0VE = 1.2VE = 1.4VE = 1.6V

Raman spectra of SWCNT hv = 2 54 eVRaman spectra of SWCNT, hvexc= 2.54 eV(0.2 M LiClO4 + acetonitrile)

cI

Spectroelectrochemical cell

x40+ 1.25 V

2))(( γγ iEEEiEE

IiiphLiiL −−+−−

=

RE (A /A Cl) N -inlet2

N -outlet2

y, a

. u.

sity

, a. u

.

RE (Ag/AgCl)CE (Pt)

Electrolyte solution

N inlet2

Ram

an in

tens

ity

an in

tens

Electrolyte solutionPyrex window

WE 1640160015601520

Ram

240220200180160140

-1.75 V

(vs. Fc/Fc+)WE 1640160015601520240220200180160140

Raman shift, cm -1

Raman spectra of DWCNT, hvexc= 1.83 eV(0.2 M LiClO4 + acetonitrile)

0.9 V

1.2 V

1.5 V

nsity

, a. u

.

0 V

0.3 V

0.6 V

0.9 VR

aman

inte

n 0 V

-0.3 V

-0.6 V

-0.9 V

-1.2 V

-1.5 V

350300250200150100Raman shift, cm -1

M. Kalbáč, L. Kavan, M. Zukalová and L. Dunsch: Adv. Funct. Mater., 15, 418-426, (2005).

THANK YOU !!!

• GACR-DFG

Financial support:

• GA AV• MSMT-USA

K k

1) M Kalbac L Kavan L Dunsch and M S Dresselhaus Nanoletters 8 1257 1264 (2008)

martin.kalbac@jh-inst.cas.czKontakt:

1) M. Kalbac, L. Kavan, L. Dunsch and M.S. Dresselhaus. Nanoletters, 8, 1257-1264 (2008).2) M. Kalbac, L. Kavan, M. Zukalová and L. Dunsch. Chemistry - A Eur. J., 14, 6231-6236 (2008).3) M. Kalbac, L. Kavan, L. Dunsch. J. Phys. Chem C. 112(43), 16759-16763 (2008).4) M. Kalbac, H. Farhat, L. Kavan, J. Kong, M.S. Dresselhaus. Nanoletters, 8 (10), 3532-3537 (2008).5) M. Kalbac, L. Kavan, L. Dunsch. J. Phys. Chem C. 113(4), 1340-1345 (2009).6) M. Kalbac, L. Kavan, H. Farhat, J. Kong, M.S. Dresselhaus. J. Phys. Chem C. 113(5), 1751-1757 (2009).) , , , g, y ( ), ( )7) M. Kalbac, L. Kavan, L. Dunsch: J. Am. Chem. Soc. 131(12) 4529-4534, (2009).8) M. Kalbac, H. Farhat, L. Kavan, J. Kong, K. Sasaki, R.Saito and M. S. Dresselhaus. ACS Nano, 3 (8), 2320-2328 (2009).9) M. Kalbac, A. A. Green, M. C. Hersam, and L. Kavan. ACS Nano, 4 (1), 459-469 (2010). 10) M. Kalbac, V. Zólyomi, Á. Rusznyák, J. Koltai, J. Kürti and L. Kavan. J. Phys. Chem C. 114, 25015-2511 (2010).