+ All Categories
Home > Documents > Josef Vojtěch, Miroslav Karásek, Jan Radil

Josef Vojtěch, Miroslav Karásek, Jan Radil

Date post: 04-Feb-2016
Category:
Upload: kamea
View: 20 times
Download: 0 times
Share this document with a friend
Description:
ALL-OPTICAL CHROMATIC DISPERSION COMPENSATION IN LONG-HAUL TRANSMISSION OVER 225km – WITH NO INLINE AMPLIFICATION. Josef Vojtěch, Miroslav Karásek, Jan Radil. www.ces.net. All-optical chromatic dispersion compensation Outline. Motivations CD compensation techniques Laboratory setup - PowerPoint PPT Presentation
27
Josef Vojtěch, Miroslav Karásek, Jan Radil www.ces.net ALL-OPTICAL CHROMATIC DISPERSION COMPENSATION IN LONG-HAUL TRANSMISSION OVER 225km – WITH NO INLINE AMPLIFICATION
Transcript
Page 1: Josef Vojtěch, Miroslav Karásek, Jan Radil

Josef Vojtěch, Miroslav Karásek, Jan Radil

www.ces.net

ALL-OPTICAL CHROMATIC DISPERSION COMPENSATION IN LONG-HAUL TRANSMISSION OVER 225km –

WITH NO INLINE AMPLIFICATION

Page 2: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 2

All-optical chromatic dispersion compensation

Outline

Motivations

CD compensation techniques

Laboratory setup

Experimental results

Conclusions

Q & A

Page 3: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 3

Majority of installed fibres – ITU-T G.652, SSMF

Designed for operation in O band

C band – attractive area of operation (low IL, EDFAs, …)

CD coefficient around 1550 nm ≈ 16.8 ps/(nm * km)

CD limits reach significantly 10G NRZ - 90 km of SSMF

40G NRZ - 5 km of SSMF

100G NRZ - 900 m of SSMF !!!

Must be mitigated or compensated

All-optical chromatic dispersion compensation

Motivations I

Page 4: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 4

CD management studied intensively in regular setups

All-optical chromatic dispersion compensation

Motivations II

80 km SSMF

DCF DCF DCF

80 km SSMF

In Research and Educational Networks sometimes not possible or economically reasonable have active components between the transmitter and the receiver

Nothing-in-line (NIL) approach

CD compensation in long-haul NIL setups – relatively unknown

Page 5: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 5

1G NIL 300 km G.652 (EDFA only) 325 km G.652 (EDFA + Raman)

10G NIL 2x10G+2x1G WDM 202km G.652 (EDFA + DCF) 8x10G DWDM 250km G.652 (EDFA + FBGs) 10G DWDM 302 km G.655+652 (EDFA + Raman)

10G NIL bidirectional (single fibre) transmission 2x4x10G 210km G.652 (EDFA + FBGs)

All-optical chromatic dispersion compensation

Motivations II – NIL results

Page 6: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 6

Electrical pre or/and post processing

All-optical compensating elements:

All-optical chromatic dispersion compensation

CD compensation

Dispersion compensating fibre (DCF)

Fibre Bragg grating (FBG)

Gires-Tournois etalon (GTE)

Virtually-imaged phase-array (VIPA)

Page 7: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 7

All-optical chromatic dispersion compensation

All-optical compensating elements comparisonBroad-band

IL [dB] Tunable Slope match

DCF 16km YES 8.9 Semi NO

FBG NO 2.9 YES YES

FBG YES 3.5 NO YES

GTE NO 2 YES NO

GTE YES 7 NO YES

VIPA NO 7 YES NO* Elements compensating CD of 100 km SSMF are compared

** Table based on product information known to authors

Page 8: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 8

TX - 8 x 10 GE DWDM XFPs 1550.12 - 1556.55 nm

225 km of SSMF on reels (granularity 50 km and 25 km) CD +3780 ps/nm

Four DCF modules -1370, -946, -689 and -343 ps/nm

Packet error rate measured by Packet Blazer 10GigE FTB-5810G

All-optical chromatic dispersion compensation

Lab setup I – DCF based

Tx1

.

.

.

Tx8

Rx1

Rx8

.

.

.

MUX

DEMUX

DCF DCF225 km of SSMF

Booster EDFA Preamp EDFAs

Page 9: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 9

Compensated value -3400 ps/nm, 90% of line CD

Channelized fixed FBGs

Chanelized tuneable FBGs

Broadband fixed FBGs

Channelized tuneable GTEs

All-optical chromatic dispersion compensation

Lab setup II – alternative elements

225 km of SSMF

Booster EDFA Preamp EDFA

Tx1

.

.

.

Tx8

Rx1

Rx8

.

.

.

MUX

DEMUX

CD

Page 10: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 10

Back-to -back eye-diagram of transmitter

All-optical chromatic dispersion compensation

Lab setup cont.

Page 11: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 11

Tolerance to composite launched power – post compensation

All-optical chromatic dispersion compensation

Experimental results - DCFs

Launched power tolerance post comp. only

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

20 21 22 23 24 25 26 27 28 29 30

Composite Pin [dBm]

Lo

g o

f fr

am

e e

rro

r ra

te

89%

79%

70%

61%

54%

Page 12: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 12

Tolerance to composite launched power – pre compensation 9%

All-optical chromatic dispersion compensation

Experimental results - DCFs

Launched power tolerance - precomp. ratio 9%

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

20 22 24 26 28 30

Composite power in [dBm]

Lo

g o

f fr

am

e e

rro

r ra

te

pr 9% po 79%

pr 9% po 61%

pr 9% po 54%

Page 13: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 13

Tolerance to composite launched power – pre compensation 18 and 25 %

All-optical chromatic dispersion compensation

Experimental results - DCFs

Launched power tolerance - precomp. ratio 18, 25%

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

20 22 24 26 28 30

Composite Pin [dBm]

Lo

g o

f fr

am

e e

rro

r ra

te

pr 18% po 70%

pr 18% po 61%

pr 25% po 64%

pr 25% po 54%

Page 14: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 14

Tolerance to composite launched power – post compensation

All-optical chromatic dispersion compensation

Experimental results – alternative elements

Launched power tolerance

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

20 22 24 26 28 30

Composite Pin [dBm]

Lo

g o

f fr

ame

erro

r ra

te

chann. FBG

chann. TFBG

broadband FBG

GTE

Page 15: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 15

Tolerance to composite launched power – post compensation

All-optical chromatic dispersion compensation

Experimental results – broadband FBGs

Launched power tolerance

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

21 22 23 24 25 26 27 28 29 30

Composite Pin [dBm]

Lo

g o

f fr

ame

erro

r ra

te

BFBG 79%

BFBG 90%

BFBG 97%

Page 16: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 16

Tolerance to composite launched power – post compensation

All-optical chromatic dispersion compensation

Experimental results – channelized FBGs

Launched power tolerance

-9-8-7-6-5-4-3-2-10

21 23 25 27 29

Composite Pin [dBm]

Log

of fr

ame

erro

r ra

te

CFBG 79%

CFBG 85%

CFBG 90%

Page 17: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 17

Tolerance to composite launched power – post compensation

All-optical chromatic dispersion compensation

Experimental results – channelized GTEs

Launched power tolerance

-9-8-7-6-5-4-3-2-10

21 23 25 27 29

Pin [dBm]

Log

of fr

ame

erro

r ra

te

CGTE 79%

CGTE 85%

CGTE 90%

Page 18: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 18

Tolerance to compensation ratio – post compensation

All-optical chromatic dispersion compensation

Experimental results – tunable elements

Post compensation

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

60% 65% 70% 75% 80% 85% 90% 95% 100%

CD compensation [ps/nm]

Lo

g o

f fr

ame

erro

r ra

te

TCFBG

TCGTE

Page 19: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 19

Influence of post compensation ratio - TCGTEs

All-optical chromatic dispersion compensation

Experimental results – tunable elements

79%

85%

90%

Page 20: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 20

Tolerance to compensation ratio – pre compensation 9%

All-optical chromatic dispersion compensation

Experimental results – tunable elements

Pre compensation 9 %

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

60% 65% 70% 75% 80% 85% 90% 95% 100%

CD compensation [ps/nm]

Lo

g o

f fr

am

e e

rro

r ra

te

TCFBG

TCGTE

Page 21: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 21

Tolerance to compensation ratio – pre compensation 9%

All-optical chromatic dispersion compensation

Experimental results – tunable elements

TCGTEs - 71% post compensation TCFBGs - 71% post compensation

Page 22: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 22

Tolerance to compensation ratio – pre compensation 18%

All-optical chromatic dispersion compensation

Experimental results – tunable elements

Pre compensation 18%

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

60% 65% 70% 75% 80% 85% 90% 95% 100%

CD compensation [ps/nm]

Lo

g o

f fr

am

e e

rro

r ra

te

TCFBG

TCGTE

Page 23: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 23

All-optical chromatic dispersion compensation

Conclusions - DCFs

Post compensation - error free transmission in quite small range (about 60 – 70%)

Small pre compensation 9% - error free transmission range grows to (about 54 - 79%)

Further increase of pre compensation – lower power threshold of error free operation but decreases power range significantly

Page 24: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 24

All-optical chromatic dispersion compensation

Conclusions – alternative elements

GTEs allow lower launched input powers

Broadband FBGs easily handle high launched powers

Both fixed and tuneable channelized FBGs perform nearly identically; tuneable ones a little worse due to higher IL

Small pre compensation 9% - error free transmission range grows significantly again

Page 25: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 25

All-optical chromatic dispersion compensation

Conclusions

DCFs - well known, widely deployed and broadband but bulky, lossy, prone to non-linear effects and expensive

FBGs - commercially available, lower IL, broadband (some), tunable (some), cost effective

GTEs - very low IL, tunable, cost effective but not so widespread and available

VIPAs - not tested yet, commercial availability limited

Next challenge CD compensation at 40G

Page 26: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 26

All-optical chromatic dispersion compensation

Acknowledgement

Lada Altmanová

Jan Gruntorád

Stanislav Šíma

This research has been supported by the Ministry of Education, Youth and Sport of the Czech Republic under research plan no. MSM6383917201 called “Optical National Research Network and Its New Applications”.

Page 27: Josef Vojtěch, Miroslav Karásek, Jan Radil

Aug 29, 2007 CSN 2007

Palma de Mallorca, Spain 27

All-optical chromatic dispersion compensation Thank you for your kind attention!

Q&A


Recommended