+ All Categories
Home > Documents > MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

Date post: 26-Oct-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
99
CAP-6 MANIPULACIÓN DE LA EXPRESIÓN GÉNICA Laboratorio de Fisiología y Genética de Bacterias Lácticas
Transcript
Page 1: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

C A P - 6

MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

Laboratorio de Fisiología y Genética de Bacterias Lácticas

Page 2: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

UTILIZACIÓN DE ENZIMAS EN LA INDUSTRIA ALIMENTICIA

Page 3: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

• Alfa-amilasa• Quimosina• Lipasas• Proteasas

Producción de proteínas

de interés

• E. coli• Bacterias lácticas• Levaduras• Plantas• Animales

Expresión de proteínas

recombinantes en diferentes huéspedes

• Replicación del DNA• Transcripción• Traducción• Métodos para

detectar las proteínas

Clonado, vectores de expresión, modificación

del genoma

Page 4: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

EXPRESIÓN DE PROTEÍNAS EN PROCARIOTAS

Dr. Víctor Blancato

Laboratorio de Fisiología y Genética de Bacterias Lácticas

Page 5: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SISTEMAS BIOLÓGICOS DE PRODUCCIÓN DE PROTEÍNAS RECOMBINANTES

• Bacterias• Escherichia coli• Bacillus subtilis• Lactococcus lactis

• Células eucariotas• – Hongos

• Levaduras• Saccharomyces cerevisiae• Pichia pastoris

• Hongos filamentosos• Células animales en cultivo• Células de insecto en cultivo• Plantas

Maximizar la expresiónde proteínascodificadas por genesclonados

Page 6: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

CLONADO PARA APLICACIONES BIOTECNOLÓGICAS

• Para muchas aplicaciones se requiere un alto nivel de expresión de proteínas

• Se han creado muchos vectores de expresión que proveen de elementos para controlar• Transcripción• Traducción• Estabilidad de las proteínas• Secreción.

Page 7: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

CLONADO PARA APLICACIONES BIOTECNOLÓGICAS

• Características manipuladas para modular la expresión:• Promotor• Terminador transcripcional• Fuerza del rbs• Número de copias del plásmido• Localización plasmídica o cromosómica• Localización celular de la proteína• Eficiencia de traducción en el huésped• Estabilidad de la proteína

Page 8: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

EFECTO DEL NÚMERO DE COPIAS DEL GEN HETERÓLOGO

• En general,• El nivel de expresión es proporcional al número de copias del gen clonado.• El clonado en un vector multicopia aumenta la expresión de un gen.

• Sin embargo…• Alto costo energético asociado a la replicación de un plásmido de alto número

de copias.• Otros genes del plásmido también se expresan.• Carga metabólica por la expresión de la proteína heteróloga.• Limitación de O2 en el cultivo.

• El efecto es…• Pérdida del plásmido por contra-selección en medios sin presión selectiva: un

problema real para la producción a escala industrial.

Page 9: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

CÓMO ES UN PROMOTOR IDEAL PARA UN SISTEMA DE EXPRESIÓN RECOMBINANTE ?

• Promotor fuerte (no siempre es recomendado!)• Fuerza para asegurar expresión > 10 % del total de proteína celular.

• Promotor regulado• La sobreexpresión de una proteína impone carga metabólica a las células,

bajando la velocidad de crecimiento.• Algunas proteínas recombinantes pueden ser “tóxicas” para las bacterias.• Necesario separar crecimiento de la expresión del gen heterólogo.• Reducir la expresión basal.

Page 10: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

PROMOTORES

Page 11: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

PROMOTORES REGULABLES

• Promotor lac de E. coli• En ausencia de lactosa no hay transcripción• Se induce con lactosa o IPTG (el represor lac se libera)• CAP aumenta la

afinidad de la ARN pol• La afinidad de CAP

aumenta en presencia de cAMP

• El nivel de cAMP es máximo con baja glucosa

CAP: catabolite activator protein

Page 12: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

PROMOTORES REGULABLES

• Promotor T7• El promotor del bacteriófago T7 requiere la T7

RNA polimerasa• El gen de dicha polimerasa se inserta en el

genoma de E. coli en un fago λ lisogénico• Bajo control del promotor lac

• Luego de transformar las células con un plásmido, con un gen clonado bajo el promotor T7; se adiciona IPTG para inducir• se sintetiza la T7 RNA polimerasa

• T7 RNA polimerasa se transcribe el gen de interés

Page 13: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

PET28

Page 14: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

PROTEÍNAS DE FUSIÓN

• Para evitar la degradación de proteínas heterólogas se pueden fusionar a proteínas estables del huésped.

• En algunos casos se pueden utilizar directamente fusionadas o hay que remover el agregado.

• Algunas proteínas de fusión además sirven para facilitar el proceso de purificación.

Page 15: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SISTEMAS DE PROTEÍNAS DE FUSIÓN

Page 16: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

EJEMPLO

• Fusión de interleuquina-2 a un péptido• Reduce la degradación• Puede ser utilizado para purificar la proteína

• Luego de la expresión y lisis de las células se pasa el extracto por una columna de inmunoafinidad

• El péptido se une a los anticuerpos y el resto de las proteínas no son retenidas

• Se lava con buffer• Finalmente se obtiene la proteína de interés

• Eluyendo con el peptido

Page 17: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

OPCIONES DE FUSIÓN DE LA PROTEÍNA

Page 18: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

PMAL

Page 19: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

ELIMINAR EL TAG

Page 20: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

AUMENTANDO LA TRADUCCIÓN:

• Señal de inicio de la traducción• Correcto posicionamiento del rbs

• Ausencia de estructuras secundarias

RBS

ATG

Page 21: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

AUMENTANDO LA TRADUCCIÓN:

• Uso de codones• Múltiples codones para algunos aminoácidos• Algunos codones son usados con poca frecuencia• Bajas concentraciones de los tRNAs correspondientes• Diferentes organismos pueden usar los diferentes codones a una frecuencia

distinta.

Page 22: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

CODONES

Page 23: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

USO DE CODONES:ESTRATEGIAS DE OPTIMIZACIÓN

1. Expresar en un huésped diferente, que tenga el mismo uso de codones del gen heterólogo

2. Uso de un organismo huésped modificado genéticamente.• Por ejemplo, que sobreexprese tRNAs de baja abundancia.

3. Síntesis química de un nuevo gen.• Alterar la secuencia del gen de interés, usando codones que correspondan a los

mas frecuentes del organismo huésped.

Page 24: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

0.24 USD por base1200 pb: 288USD1800 pb: 432USD30-45 días de demora

Page 25: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

AUMENTO DE ESTABILIDAD DE LA PROTEÍNA

• Adición de aminoácidos en el extremo N-terminal,• Evitar regiones que generen susceptibilidad a degradación

• Regiones PEST• (P) Prolina• (E) Acido glutámico• (S) Serina• (T) treonina

Page 26: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

OTROS FACTORES

• Facilitar el plegado, expresión a baja temperatura• Co-expresión con chaperonas u otras proteínas• Utilizar cepas deficientes en proteasas• Aumentar la disponibilidad de oxígeno

• Agitación• Expresión de hemoglobina bacteriana• Limitar la formación de biofilm (usar una mutante)

• Integrar el DNA al cromosoma para reducir la carga metabólica

Page 27: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SECRECIÓN

• Enviar una proteína al periplasma o al exterior celular• Facilita la purificación• Baja los costos de purificación

• Puede aumentar su estabilidad• Se utiliza un péptido señal• En gran negativas debido a la

membrana externa es difícil la secreción al medio.• Cepas mutantes• Usar bacterias Gram positivas

Page 28: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

CARGA METABÓLICA

• La introducción y expresión de DNA foráneo en un organismo afecta el metabolismo de manera que afecta el funcionamiento normal de la célula.

• Puede ocurrir por diferentes causas, por ejemplo:• Alto número de copias del plásmido que requiere energía para la replicación y

mantenimiento• La baja solubilidad del oxigeno a veces es insuficiente para mantener a la célula, la

replicación del plásmido y expresión.• La sobre expresión puede depletar ciertos tRNA o ciertos aminoácidos y consumir la

energía de la célula en forma de ATP y GTP• Cuando se secreta una proteína al periplasma puede bloquear el transporte de

proteínas esenciales.• La proteína foránea per se puede interferir con el metabolismo de la célula,

convirtiendo un intermediario metabólico en un compuesto inútil o toxico.

Page 29: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

ENZIMAS RECOMBINANTES EN INDUSTRIA ALIMENTICIA

Page 30: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

UTILIZACIÓN DE ENZIMAS EN LA INDUSTRIA ALIMENTICIA

Page 31: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

ENZIMAS RECOMBINANTES COMERCIALIZADASProducto Microorganismo productor Microorg. fuente Aplpicacionα-Acetolactatedecarboxylase

Bacillus amyloliquefaciens orBacillus subtilis

Bacillus sp. Bevr

α-Amylase Bacillus amyloliquefaciens orBacillus subtilis Bacillus sp. Stch Bevr Feed Text Ldry Pulp Wast MiscBacillus licheniformis Bacillus sp. Stch Frut Bevr Sugr Bake Text Ldry Dish Pulp

Catalase Aspergillus niger Aspergillus sp. Milk Egg Text MiscCellulase Aspergillus oryzeae Humicola sp. Text Ldry

Trichoderma reesei orTrichoderma longibranchiatum

Trichoderma sp. Feed Text

Chymosin Aspergillus niger ssp. awamori Calf prochymosin B ChesKluveromyces lactis Calf prochymosin B ChesEscherichia coli K12 Calf prochymosin A Ches

Cyclodextrin-glycosyltransferase (CGTase)

Bacillus licheniformis Thermomyces anaerobacter. Stch

α-Galactosidase Aspergillus oryzeae Aspergillus sp. FeedSaccharomyces cerevisiae Guar plant Feed

β-Glucanase Bacillus amyloliquefaciens orBacillus subtilis

Bacillus sp. Stch Bevr Feed

Trichoderma reesei orTrichoderma longibranchiatum

Trichoderma sp. Stch Diet Feed

Glucose isomerase Streptomyces lividans Actinaoplanes sp. StchStreptomyces rubiginosus Streptomyces sp. Stch

Glucose oxidase Aspergillus niger Aspergillus sp. Egg Bevr Bake Sald Misc2-Haloalkanoate dehalogenase

Pseudomonas putida Pseudomonas sp. Misc

Hemicellulase Bacillus amyloliquefaciens orBacillus subtilis

Bacillus sp. Bake

Lipase Aspergillus oryzeae Candida sp FatsRhizomucor sp. Fats MiscHumicola sp. Fats Bake Feed Ldry Dish Pulp Lthr

Bacillus amyloliquefaciens orBacillus subtilis

Pseudomonas sp. Ldry

Pseudomonas alcaligenes Pseudomonas sp. Ldry

Legend: Bake = baked goods, Bevr = beverages, Ches = cheese, Diet = dietary foods, Dish = dishwashing powder, Fats = fats and oils, Frut = fruits and vegetables, Ldry = laundry, Lthr = leather, Misc = miscellaneous, Pulp = pulp and paper, Sald = salads, Stch = cereal and starch, Sugr = sugar and honey, Text = textile, Wast = wastewater treatment;.

Page 32: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

ENZIMAS RECOMBINANTES COMERCIALIZADAS

Producto Microorganismo productor Microorg. fuente AplpicacionLipase Pseudomonas alcaligenes Pseudomonas sp. LdryMaltogenic amylase Bacillus amyloliquefaciens or

Bacillus subtilisBacillus sp. Stch Bevr Bake

Penicillin amidase Alcaligenes faecalis Alcaligenes sp. MiscEscherichia coli Escherichia sp. Misc

Phytase Aspergillus oryzeae Aspergillus sp FeedAspergillus niger Aspergillus sp Feed

Protease Aspergillus oryzeae Rhizomucor sp. ChesBacillus alcalophilus Bacillus sp. LdryBacillus amyloliquefaciens orBacillus subtilis

Bacillus sp. Meat Fish Stch Bevr Bake Sald Feed Ldry Pulp Lthr Misc

Bacillus lentus Bacillus sp. Ldry DishBacillus licheniformis Bacillus sp. Meat Fish Feed Ldry Dish Pulp Lthr

Pullulanase Bacillus licheniformis Bacillus sp. StchKlebsiella planticola Klebsiella sp. Stch Bevr Bake

Xylanase Aspergillus niger ssp. awamori Aspergillus sp. BakeAspergillus niger Aspergillus sp. Stch Bevr Bake Feed Text PulpBacillus amyloliquefaciens orBacillus subtilis

Bacillus sp. Stch Bevr Bake Feed Text Pulp

Bacillus licheniformis Bacillus sp. Stch PulpTrichoderma reesei orTrichoderma longibranchiatum

Trichoderma sp. Stch Bevr Feed Pulp

Trichoderma longibranchiatum Aspergillus nidulans,Streptoalloteichus sp.

Food Bevr

Page 33: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

ENZIMAS UTILIZADAS

Page 34: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA
Page 35: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SEGURIDAD

• Los vectores de expresión codifican marcadores de selección:• Resistencias a antibióticos• Complementación de auxotrofías

• Resistencias más comunes• Kanamycina (kanr) utilizado en Bacillus y P. fluorescens• Ampicilina (ampr) en E. coli• Tetraciclina (tetr) utilizado en P. fluorescens

Page 36: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SEGURIDAD

• Prevenir la presencia de copias intactas de los genes de resistencia en los productos enzimáticos.

• Realizar hidrólisis de DNA• Controlar mediante ensayos de transformación• Tamaño del DNA residual

• Por otro lado, • Las enzimas se utilizan en muy baja concentración• No llegan al alimento final• Son inactivadas al cocinar

Page 37: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

EXPRESIÓN DE PROTEÍNAS EN BACILLUS

Dr. Víctor Blancato

Laboratorio de Fisiología y Genética de Bacterias Lácticas

Page 38: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

EXPRESIÓN EN BACILLUS

• Desarrollo de plásmidos• Cepas de Bacillus sin enzimas de recombinación, proteasas• Inserción en el cromosoma• Utilización de auxotrofías como método de selección• Métodos de expresión

• Plasmídico, cromosomal• Fusión, directo• Citoplasmático, Secretada

Page 39: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

EXPRESIÓN EN BACILLUS

Page 40: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

BACTERIAS LÁCTICAS COMO SISTEMA PARA LA

EXPRESIÓN DE PROTEÍNAS

Dr. Víctor Blancato

Laboratorio de Fisiología y Genética de Bacterias Lácticas

Page 41: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

CONTENIDO II

Introducción

• Que son las bacterias lácticas• Importancia de las BAL• Aplicaciones actuales y futuras

Expresión• Estrategias

Herramientas• Herramientas de manipulación y expresión

Aplicaciones• Ejemplos

Page 42: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

QUE SON LAS BACTERIAS LÁCTICAS

• Las bacterias lácticas (BAL) son bacterias fermentadoras que habitan, o son intencionalmente adicionadas a medioambientes ricos donde los carbohidratos y proteínas son abundantes

Page 43: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

MAS QUE UN YOGURT

Page 44: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA
Page 45: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

BACTERIAS LÁCTICAS

• Las bacterias lácticas (BAL) incluyen un grupo heterogéneo de microorganismos.• Rasgo en común: producción de ácido láctico como producto final

mayoritario.• Bacterias gram positivas• No esporulantes• Catalasa negativas• Ácido resistentes• Anaeróbicas facultativas• La gran mayoría son no patógenas

Lactobacillus acidophilus

Escherichia coli

Page 46: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

PORQUÉ UTILIZAR BAL?

• En la ultima década hubo un cambio en la percepción de las BAL como microorganismos utilizados solo para la producción de alimentos fermentados, hacia microorganismos útiles para la producción de proteínas o biofármacos.

• Los seres humanos consumen BAL desde hace miles de años.

Poseen el estatus GRAS: Generally recognised as Safe

Page 47: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

GÉNEROS DE BAL

• Carnobacterium• Enterococcus• Lactobacillus• Lactococcus• Leuconostoc• Oenococcus• Pediococcus• Streptococus• Tetragenococcus• Vagococcus• Weisella

Page 48: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

IMPORTANCIA INDUSTRIAL

• La mayoría de las BAL obtienen energía de la conversión de azúcares en ácido láctico (homofermentadoras) o ac. láctico y otros productos (heterofermentadoras)

• Consecuentemente se las ha asociado a la preparación de alimentos fermentados• Fermentación láctica de alimentos (8000 A.C.)

• La preservación no solo es consecuencia del descenso de pH (3,5-4,5) sino también de la producción de numerosos agentes antibacterianos• Bacteriocinas• Compuestos orgánicos

Características organolépticas

Page 49: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

BAL EN SALUD Y NUTRICIÓN

• Probióticos: Microorganismos vivos que, al ser administrados en cantidades adecuadas confieren un beneficio en la salud del consumidor.• Lactobacillus casei• Lactobacillus debrueckii• Lactobacillus acidophilus• Lactobacillus plantarum• Lactobacillus fermentum• Lactobacillus reuteri

Page 50: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

BAL EN SALUD Y NUTRICIÓN

• Históricamente, la primera aplicación involucró la habilidad para digerir lactosa.• Las bacterias vivas presentes en el yogurt (S. thermophilus y Lb. bulgaricus)

• consumen la lactosa durante la producción del yogurt• proveen al huésped con un suplemento de lactasa o• Estimulan la producción.

• Una segunda aplicación sería la protección contra los patógenos.• Las BAL actuarían como una barrera impidiendo la colonización.

• Otra aplicación bien demostrada es la estimulación del sistema inmune.

Page 51: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

USOS NUEVOS Y FUTUROS

1. Producción de proteínas de importancia económica en fermentadores

2. Producción de alimentos conteniendo proteínas de interés biotecnológico

3. Construcción de vacunas vivas

Page 52: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

USOS NUEVOS Y FUTUROS

1. Producción de proteínas de importancia económica en fermentadores

• La secreción sería ventajosa, para facilitar la purificación del producto final en cultivos continuos y evitaría la formación de agregados intracelulares.

2. Producción de alimentos conteniendo proteínas de interés biotecnológico

• Enzimas para:• Modificar propiedades organolépticas• Prevenir el crecimiento de microorganismos indeseados• Acelerar la maduración de los quesos• Optimizar la producción de ensilados

3. Construcción de vacunas vivas• Presentación de antígenos• Transporte de ADN

Page 53: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

ESTRATEGIAS DE EXPRESIÓN

Page 54: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

CRITERIOS ANTES DE EMPEZAR

Criterio ConsideracionesLocalización del gen heterólogo Extracromosómico (plásmido) o

integrado al cromosomaSistema de expresión Constitutivo o inducibleLocalización de la proteína Citoplásmica, extracelular o

asociada a la pared celularContención biológica de la BAL manipulada

Deleción de genes esenciales, cepas auxótrofas

Page 55: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

LOCALIZACIÓN DEL GEN HETERÓLOGO

Dependiendo de los requerimientos el gen heterólogo se puede expresar

• En un plásmido• Ventajas: Pequeño tamaño Replicación en E. coli Sitios de múltiple clonado Fácil manipulación

• Desventajas: Se pueden perder Los niveles de expresión pueden variar dependiendo del numero de

copias

Page 56: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

LOCALIZACIÓN DEL GEN HETERÓLOGO

Dependiendo de los requerimientos el gen heterólogo se puede expresar

• En el cromosoma• Ventajas:Número de copias de genes controlado Reemplazando un gen esencial permite controlar la proliferación de la bacteria

• Desventajas: Lento proceso de construcción

Page 57: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SISTEMA DE EXPRESIÓN: INDUCIBLE O CONSTITUTIVO

Depende de la naturaleza de proteína• Toxicidad• Plegado• SolubilidadUna expresión constitutiva• Puede afectar el metabolismo Generación de mutaciones Inactivación de la expresión

Una expresión induciblePermite seleccionar cuando y en que cantidad se

va a expresar la proteína

Puede afectar la expresión

Page 58: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

LOCALIZACIÓN DE LA PROTEÍNA

• Dependiendo de la naturaleza de la proteína se puede expresar• Intracelularmente• Secretada extracelularmente (péptido señal)

• Citoquinas• Anticuerpos

• Asociada a la pared celular• Antígenos

Page 59: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

HERRAMIENTAS PARA LA MANIPULACIÓN GENÉTICA DE BAL

Page 60: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

pG+HOST

pG+host5(1996)

orfB orfC repA-Ts orfDOri++ EmR+ ori pBR322+ ISS1

Amplio rango de huéspedes No requiere repA en trans Replica bien en E. coli El gen de resistencia a Em no se expresa bien El ori pBR322 podría provocar inserciones en tándem del

plásmido

Page 61: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

pG+host9

Amplio rango de huéspedesLactobacillus delbrueckiiStreptococcus suisStreptococcus uberisEnterococcus faecalisDesulfitobacterium dehalogenansBacillus pseudofirmus

No requiere repA en trans Dificultosa selección de mutantes

Page 62: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

pBVGh

Page 63: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

HERRAMIENTAS GENÉTICAS PARA LA PRODUCCIÓN DE PROTEÍNAS EN BAL

Page 64: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

HERRAMIENTAS GENÉTICAS PARA LA PRODUCCIÓN DE PROTEÍNAS EN BAL

• El estudio de plásmidos salvajes permitió el desarrollo de numerosos vectores de clonado

• Plásmidos:• Origen de replicación (ori)• Marcador de selección: resistencia a antibióticos• Sitio de múltiple clonado

• Los más utilizados • pAMβ1

• Enterococcus faecalis• Versión bajo nro. de copias (pIL252), alto (pIL253) (Simon and Chopin 1988)

• pWV01• L. lactis subsp. cremoris• Amplio espectro• Versión bajo nro. de copias (pGK1), alto (pGK12) (Kok et al. 1984)

Page 65: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SISTEMAS DE EXPRESIÓN CONSTITUTIVOS

• fueron aislados a partir de una biblioteca genómica como fusiones al gen reportero cat‐86 (cloranfenicol acetil‐transferasa) (van der Vossen 1987)

Proteína Origen Promotor

Quitinasa Serratia marcescens P32, P59

M6 Streptococcus pyogenes P32, P59

SlpH Lactobacillus helveticus P32

Fenilalanina amonio‐liasa

Petroselinum crispum P32

Carnobacteriocina A Carnobacteriumpiscicola

P32

Ply118, Ply511 Listeria monocytogenes P32

ClfA Staphylococcus aureus P21, P32

FnBPA S. aureus P23, P59

Nuc S. aureus P23

VP2, VP3 IBDV (virus de la bursitis infecciosadel pollo)

P59

Cu/Zn superóxidodismutasa

Homo sapiens P59

Enterocina A Enterococcus faecium P32

Pediocina PA‐1 Pediococcusacidilactici

P32

Proteasa neutra Bacillus subtilis P32

Lipasa Staphylococcus lyicus P44

Page 66: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SISTEMAS DE EXPRESIÓN INDUCIBLES

Page 67: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SISTEMAS DE EXPRESIÓN INDUCIBLES POR AZÚCARES

• Sistema lac-T7 (Wells et al1993)• Combina la RNApol de T7, el promotor T7 y el promotor PlacAltos niveles de producción Inviable

RNApol

Plac

Proteína

T7

pILPolLactosa

Operón lac

ATB1 ATB2ATB3

Page 68: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SISTEMAS DE EXPRESIÓN INDUCIBLES POR AZÚCARES

• Sistemas de expresión inducible por xilosa (Miyoshi et al 2004)• Utiliza el promotor del transportador de xilosa de L. lactis Inducción de 10000 veces

Proteína

PxylT

xilosa

XylR

-

Azúcares PTS CcpA-HPr-Ser-P

• Costosa• Su utilización es una

propiedad variable

Page 69: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SISTEMAS DE EXPRESIÓN INDUCIBLES POR ESTRÉS

• Por calor (Kuipers et al1997)• Utiliza el promotor del gen dnaJ• Inducción al pasar de 30 a 42°C Bajo nivel 3-4 veces Nivel basal de expresión El cambio de temperatura puede afectar la expresión de

otros genes

Page 70: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SISTEMAS DE EXPRESIÓN INDUCIBLES POR ESTRÉS DE PH

• P170 (Madsen et al 1999)• Promotor de un gen no caracterizado denominado orfX• La inducción depende del regulador RCfB (CRP-FNR family) a través de la unión a

ACiD-boxes• Inducción al disminuir el pH a menos de 6La inducción se da por la auto acidificación del medio

Proteína Origenestreptokinasa Streptococcus spp.

β‐hemolíticosamilasa maltogénica Lactobacillus gasseri

ATCC33323alérgeno Ara h2 manísubunidad B de la ureasa Helicobacter pylori

Page 71: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SISTEMAS DE EXPRESIÓN INDUCIBLES POR ESTRÉS DE PH

• PcitM (Marelli et al 2010)• Controla el operón cromosomal cit de L. lactis Inducción (4 veces) al disminuir el pH a menos de 6La inducción se da por la auto acidificación del medio

Proteína OrigenOxaloacetatodecarboxilasa

Enterococcus faecalis

Subunidad VP8* RotavirusHormona de crecimiento Homo sapiens

Page 72: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SISTEMA DE EXPRESIÓN INDUCIBLES POR NISINA

• PnisA (Ruyter et al 1996)• Controla el operón cromosomal de síntesis de nisina

PnisA

nisA nisB nisT nisC nisI nisP

PnisR

nisR nisK

PnisF

nisF nisE nisG

Precursor Transportador

Modificación

Degradación Sistema de dos

componentes

InmunidadDehidroalanina

Dehidrobutirina

Ac. aminobutírico

Page 73: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

NISIN - CONTROLLED EXPRESSION (NICE) SYSTEM

PnisA

nisA nisB nisT nisC nisI nisP

PnisR

nisR nisK

PnisF

nisF nisE nisG

Ventajas: Fácil de usar Control preciso Inducción eficiente EscalableDesventajas: Algo Costosa

Nisina:1 gr 1500 $IPTG: 1 gr 560$Lactosa: 1 gr 4$

Page 74: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SISTEMAS DE EXPRESIÓN INDUCIBLES

• Sistemas de expresión inducibles por Zn (Llull et al 2004)• Pzit

• Promotor del operón zit involucrado en la incorporación de Zn2+

• Se induce por ausencia de Zn2+

Exceso Zn2+

Proteína

Pzn

zitR

-

Zn2+Zn2+

Zn2+

Zn2+

EDTA

Proteína

Pzn

zitR

Proteína

ProteínaProteína

Económico Escalable

Page 75: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SISTEMAS DE EXPRESIÓN BASADOS EN PROMOTORES DE FAGOS

• Fago rtl de L. lactis (Nauta et al 1996)

• Fago φ31 (O´Sullivan et al. 1996)

Page 76: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

LOCALIZACIÓN DE LA PROTEÍNA

Page 77: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SECRECIÓN VÍA SEC

• L. lactis secreta una proteína mayoritaria Usp45• Hidrólisis de la pared celular y segregación celular

• Su péptido señal usp se utiliza comúnmente para la secreción de proteínas

Proteína

P

usp

Proteína

Usp Proteína

TraslocónSec

Corte

MEKKIISAILMSTVILSAAAPLSGVYA

ProteínaUsp

Page 78: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SECRECIÓN VÍA SEC

• L. lactis secreta una proteína mayoritaria Usp45• Hidrólisis de la pared celular y agregación celular

• Su péptido señal usp se utiliza comúnmente para la secreción de proteínas

Proteína

P

usp

Page 79: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

SECRECIÓN VÍA SEC

• L. lactis secreta una proteína mayoritaria Usp45• Hidrólisis de la pared celular y agregación celular

• Su péptido señal usp se utiliza comúnmente para la secreción de proteínas

• SPExp4• Propéptido sintético LEISSTCDA Proteína

P

usp leiss

Page 80: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

ANCLADO EN LA PARED

• CWA (30 aa) ubicados en el extremo C-terminal• Es la señal de anclado de la proteína M6 de S. pyogenes• Posee un dominio LPXTG que es reconocido por la maquinaria de anclado

• Se utiliza en combinación con un péptido señal

Proteína

P

usp cwa

Page 81: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

EJEMPLOS

Page 82: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

1•Producción de IL-10

2•Producción de

vacunas

Page 83: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

DEL PAPER A LA EMPRESA

Page 84: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

• Un L. lactis recombinante que secreta IL-10 es unaherramienta para combatir la enfermedad de Crohn(inflamación intestinal)• IL-10 como antiinflamatorio se debe administrar de por vida• La inyección produce efectos secundarios• La IL-10 es sensible a pH ácido, no se puede administrar

oralmente• La síntesis in situ sería una solución apropiada

• Preocupación por la seguridad al liberar un GMO• Contención biológica→ crearle una auxotrofía

2003

Page 85: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

• Reemplazo del gen de la timidilato sintasa

Page 86: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

IL-10 secretada

In vivo(cerdo)

ELISA

Western

• Expresión de IL-10

Page 87: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

• Viabilidad de las mutantes deficientes en thyA

Page 88: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

• Adquisición de thyA foráneo• Se mezclaron colonias L. lactis MG1363 thyA+ CmR con L. lactis

thyA- EmR

• Selección en medio sin timidina• No se recuperaron colonias thyA+ EmR

Page 89: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

• ConclusionesSe obtuvo una cepa de L. lactis recombinante con un mínimo de

DNA foráneo, no posee resistencias a ATBFue capaz de producir IL-10El sistema de contención biológica basado en el gen de la

timidilato sintasa fue eficienteNo se detectaron revertantes, supresores o adquisición del gen

thy

Page 90: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

• En el 2009 se hicieron pruebas en humanos con resultadossatisfactorios.

• Nombre comercial: ActoBioticsTM (Diabetes y enfermedadceliaca)

Page 91: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

ACTOBIOTICS®

• Bacterias de grado alimentario (Lactococcus lactis)• Modificadas genéticamente:

• Producir y secretar proteínas terapéuticas in situ• Administración oral

• Inserción del gen en el cromosoma e Inactivaciónsimulltánea del gen thyA (metodología patentada)

• Producción a gran escala• Formulación en un Actobiotics

• Liofilizado y encapsulado

TOPACT®

Page 92: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

INVERSIONES

23 millones

3 millones

15.5 millones

0.9 millones

10.7 millones

Page 93: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

PRODUCTOS

Inducción de tolerancia (Ag de gluten)Inmunomodulación (IL-10)

delivery of epithelial healing factors

delivering pro-insulin and IL10 in the gut

Page 94: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA
Page 95: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

VACUNAS

Page 96: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

CONSTRUCCIÓN DE VACUNAS VIVAS

• Actualmente se utilizan como vehículos presentadores de antígenos bacterias patógenas atenuadas• Salmonella typhimurium, Yersinia enterocolitica, Vibrio cholerae,

mycobacterium bovis, Shigella sonnei, Listeria monocytogenes, Bacillusanthracis.

• Sin embargo, existe un riesgo de reversión al estado patogénico.

• BAL• GRAS• Algunas pueden colonizar el TGI → Vacunas orales → inmunidad a

través de mucosas• Se han probado:

• L. lactis• Streptococcus gordonii• Lactobacillus sp.

Producción y presentación de antígenos modelos

Adjuvantes, produciendo el antígeno, IL2 e IL6

Page 97: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

MUCOSIS

Mimopath®The technology is built on particles that not only elicit a strong and robust systemic immune response, but also a strong local immune response in mucosal layers in the nose, airways, gut and other places in the body.

Page 98: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

MIMOPATH®

Bacterium-Like Particle

Lactococcus lactis muertosVacuna:• No modificada genéticamente• No viva

Estimulación del sistema inmune

Page 99: MANIPULACIÓN DE LA EXPRESIÓN GÉNICA

READY TO USE VACCINE SYSTEM

• Generar un sistema que permita:• Una rápida integración del DNA que codifica para el

antígeno• Optimizando el uso de codones

• Utilizar promotores sintéticos

• Porqué en bacterias lácticas?• GRAS• Relativamente fácil de crecer• Se puede producir a gran escala y rápido• Ruta de administración oral o nasal, evita el uso de jeringas


Recommended