Home >Documents >Mechatronik mit ANSYS Multiphysics ... Machine tool geometry - 18 - the drive chain between control...

Mechatronik mit ANSYS Multiphysics ... Machine tool geometry - 18 - the drive chain between control...

Date post:05-Apr-2020
Category:
View:5 times
Download:0 times
Share this document with a friend
Transcript:
  • Verknüpfung von 3D

    FEM mit 1D System

    Simulation (MOR und

    Co-simulation)

    Joël Grognuz, CADFEM (Suisse) AG

    Mechatronik mit ANSYS Multiphysics

  • Dynamic analyses overview in ANSYS

    Time saving mathematical methods:

    1. Transient with MSUP, Rigid Body Dynamics

    2. Component Mode synthesis (CMS, Superelements)

    3. Circuit or PID 1D Elements embeded

    in the same FEM model

    4. Simplorer with State space matrices obtained by Model Order

    Reduction (MOR for ANSYS, SPMWRITE in ANSYS Mechanical)

    5. Cosimulation between Simplorer and rigid body dynamics (RBD)

    - 3 -

    FEM

    2D,3D

    FEM

    2D,3D

    +1D

  • - 4 -

    MOR and Co-Simulation:

  • Model Order Reduction

  • - 6 -

    Limitation: „weak“ Nonlinearities! 1. Small Amplitudes only

    2. Contact status unchanged

     Linearization at nonlin status possible

    (large deformation, pre-stress, contact

    status frozen , …)

    Electronic component modeling and controller design may be fully nonlinear!

    Model order Reduction

     Model Order Reduktion (MOR):

    Get small dimensional Linear State-Space Model (MSUP or Krylov subspace)

    cxy

    bucxxa

    

    Cxy

    BuKxxExM

     

    TPH1

  • - 8 -

    Thermal

    Electrical

    Multidomain Model Order Reduction (MOR)

    Mechanical

    (acoustic)

  • - 9 -

    Validation: MOR quality: Mechanical example: hard disk drive head

     3352 elements

     7344 nodes

     21227 equation

    FEM:

    400 frequencies takes about 12

    min

    MOR takes only 3 s

    Comparison for head

     ANSYS 21k DOF

     MOR 30 DOF

     MOR 80 DOF

  • - 10 -

     12 inputs and outputs have been defined

    DoFs:

    ANSYS full model

    > 900 000.

    Reduced model:

    15 DoFs per input =

    15*12 = 180.

     The reduced model covers all heat sources

    and thermal cross talk at once.

    Validation: IGBT power module

  • - 11 -

    Validation: Comparison ANSYS Full  MOR

    Red line – ANSYS, green line – reduced model. Difference is close to

    the line thickness. For such accuracy, one needs 15 DoFs per input.

     Relative error

    1%

  • - 12 -

    Validation: Comparison with Measurements

    Temperatures on IGBTs

    Temperatures under IGBTs

  • - 14 -

     13 347 elements

     11 765 nodes

     55 481 equations to solve

     200 frequencies take

    about 20 min

     with MOR same result

    takes 8 second

    Validation: MOR quality: Shaker with mounting suspension

  • - 15 -

    Validation: Efficient Simulation of Acoustic FSI with MOR

  • MOR Example:

    Machine tool with

    mechatronic

    control

    Joël Grognuz, CADFEM (Suisse) AG

    - 16 -

  • Goal

    - 17 -

    3) spindle

    2) Machine body 1) Control unit

    4) Piece to machine

    Study the dynamic interaction between :

  • Machine tool geometry

    - 18 -

    the drive chain between

    control motor and moving

    base is replaced by a

    block called „motor“:

    The structure

    between base

    and tool will be

    transfered to

    simplorer as a

    reduced order

    model

    The remainder of the

    structure was negleted in

    this workshop for

    simplicity but should

    indeed be kept in order to

    obtain accurate results;

    the focus of this

    workshop is on

    modelling techniques,

    not on accuracy!

  • Motor and transmission Block

    - 19 -

  • Bushing between machine and spindle

     In Simplorer

    - 20 -

  • Motor and transmission Block

    - 22 -

    Rotational

    velocity domain

    Translational

    domain

    Coupling

    between

    rotation

    and

    translation

    (thread)

    Torsional

    rigidity &

    friction

    Inertia

    wheel

    gear box with

    efficiency

    coef.

    Translational

    rigidity &

    friction

    mass

    Electrical domain

  • Machine control study

    MOR & Verification: WB transient versus Simplorer

    Transient FE-Analysis in WB: ca. 1h

    Reduced model in Simplorer: 4 seconds

  • Machine control study

    Position Control with simple PID: too slow! Tsettling = 8,3 s

  • Machine control study

    Position Control with cascaded speed controller:

    Optimized 

    Tsettling = 2 s Tsettling = 0,75 s

  • Co-simulation

  • - 29 -

    Simplorer-RBD Co-Simulation

    Rigid Body Simulation:

    Nonlinear large scale motion and reactions:

    Co-Simulation:

    System behavior 1:1 available in System

    Simulation Tool:

  • - 30 -

    Simplorer-RBD cosimulation: Landing Gear Application

    - 30 -

  • - 31 -

    Piston Position

    Hydraulic Circuit

    Simplorer-RBD cosimulation: Landing Gear Application

  • - 32 -

    Simplorer - EM - CFD Cosimulation: solenoid valve

    - 32 -

  • - 33 -

    Synchronous Machine with AC-Voltage Excitation

    EM 1D+2D: Synchronous motor

    Source: CADFEM GmbH

  • - 34 - Source: CADFEM GmbH

    0.00 5.00 10.00 15.00 20.00 25.00 30.00 Time [ms]

    -15.00

    -10.00

    -5.00

    0.00

    5.00

    10.00

    15.00

    C u

    rr e

    n t

    [A ]

    PESM_PWMWinding Currents ANSOFT Curve Info

    Current(PhaseA) Setup1 : Transient

    Current(PhaseB) Setup1 : Transient

    Current(PhaseC) Setup1 : Transient

    10.00 15.00 Time [ms]

    -1.00

    -0.80

    -0.60

    -0.40

    -0.20

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    N o

    d e

    V o

    lt a

    g e

    (I V

    a )

    [k V

    ]

    -150.00

    -100.00

    -50.00

    0.00

    50.00

    100.00

    150.00

    -B ra

    n c h

    C u

    rr e

    n t(

    V IA

    ) [A

    ]

    Ansoft LLC 4_Partial_Motor_TR_PWMPhase Voltage / CurrentSynchronous Machine with PWM Control

    EM 1D+2D: Synchronous motor

  • Further System Simulation

    examples

  • +

    -

    B 11A 11 C11

    A 12 A 2

    B 12 B 2

    C12 C2

    ROT2ROT1

    ASMS

    3~ M

    J

    STF

    M(t)

    G N

    D

    m

    STF

    F(t)

    G N

    D

    Magnetics

    JA

    MMF

    Mechanics

    L

    H Q

    Hydraulics,

    Thermal, ...

    Simplorer Simulation Data Bus / Simulator Coupling Technology

    Block

    Diagrams

    State-space

    Models (MOR)

    Digital/

    VHDL

    JK-Flip flop with Active-low Preset and Clear

    CLK

    INV

    CLK

    CLK

    J Q

    QB

    CLR

    PST

    Flip flop

    K

    CLK

    CLK

    INV

    0 0 0 0 1 1 1 1 1 1 X-Axis

    Curve Data

    ffjkcpal1.clk:TR

    ffjkcpal1.j:TR

    ffjkcpal1.k:TR

    ffjkcpal1.clr:TR

    ffjkcpal1.pst:TR

    ffjkcpal1.q:TR

    ffjkcpal1.qb:TR

    MX1: 0.1000

    PROCESS (CLK,PST,CLR)

    BEGIN

    IF (PST = '0') THEN

    state

  • - 37 -

    Battery simulation

  • Gear

    mrv

    mtv

    mrv

    mtv

    mrv

    mtv

    mrv

    mtv

    ICE_Thr

    Reg_brake

    Motor_Thr

    Brake

    DThr

    DGear

    DBrake

    Gear

    GN

    FD Eng

    Eng

    Shaf t

    TR_ICE

    Thr_ICE

    MechAcc

    Vehicle_mass

    100 %

    11

    2

    I

    IFuel

    CONST

    IICEPower

    Simplorer car:

     Driver

    Conservative vehicle model – Physical domains

  • System design, modeling, assembly testing and

    commissioning

    Gas cooling System / CERN Geneva

  • System in underground LHC ATLAS underground

    ATLAS

    underground areas

    Distribution racks

     Detector gas cooling system modeled (1D),

    built, tested and validated on the surface before

    installation and commissioning 100m

    underground without any prototype.

    Control/ Gas renewal

    compressor

  • - 41 -

    Compressor unit (Lumped Parameters)

  • High Fidelity System Simulation

    Ultr