9iåHQt NROHJRYp ] XQLYHU]LWQtFK D Yê]NXPQêFK …kzs.tf.czu.cz/aktivity/aktivity26/mz.pdf ·...

Post on 06-Feb-2018

214 views 1 download

transcript

-

-

P –

M - Zvláštní vydání

v.v.i.

v

Obsah

1

9

16

27

O2

MIROSLAV MACÁK, LADISLAV

31

,

39

Á

46

51

AV VÁVRA

56

63

68

MIROSLAV MIMRA

78

84

88

-

92

V

98

U

102

108

112

117

V V

125

131

BARBORA

136

141

148

ÁK, PAVEL

152

159

167

173

178

186

193

201

206

216

223

-

230

236

241

247

252

-

257

262

267

,

275

- Á ÁLA

282

286

MIROSLAV MACÁK1 2

1

2

s

o

o

1

-

A B

s

2

(1) 40 7820

- -12 -

-

Zdroj: www.deere.sk

3

-

A B

s

4

s –

5

-

-

– –

– –

6

s

7

-

- - – - - -

--

- – -

-- - - - - -

- - - -- -

- - - - - MCMAHON

8

s

9

-

s

v o

s

10

- -

-

11

-

s -

1- - -

- - --

Z

s

Z

12

13

-

-

-

-

- v

12500j 314 54,03 17,18 2,67 1,08 40,37 93/7 3,4

14

Z

V

Z

Z s

Navrhování lanových chmelnicových konstrukcí. - - - -

Vollautomatische Aufhängerung der Aufleitdrähte in Hopfen-Hochgerüsten. Landtechnik-Agricultural Engineering, –

- - Engineering Principles of Agricultural Machines.

- - - Rostlinná výroba IV. - - -

– -

15

-

s

-

-

-

16

--

-

-

-

17

-

- - ,

, , , , , ,

Salix viminalisHelianthus tuberosus Sida hermaphrodita Spartina

pectinata Rosa multiflora Polygonum sachalinenseMiscanthus sinensis gigantean

-

- s-1

-1

-

- - -

o

-

-

-

18

h U 2

p U - 2 h U - p -

s

19

-

Vnnp

z – - , mnp – mn – V –

S

z – - , m – h – S – 2, h –

,

kN

, 12

,

s,

s, , p - , h - , A - , BC HI - ,

, , - , - - I –

2 12 22

p

A

B C H I

20

BC HI

s ,

- -

- p-

1 1

2

A×B A×C

B×C 1

2 2

A×B×C > 2

On

levels ,

,

21

-

- -

Rose

- -

1 2

- - - -

Rose

s s

1 2

-

22

s - s

- - - –

- - ,

- s - - – , -

-

on ,

-

, ,

-

, , even

C s,

p - , h -

s

p - , h -

2 12 22

p

p

2 12 22

p

p

2 12 22

p

p

2 12 22

p

p

23

-

p - , h -

C p -

, h -

, ,

-

-

- -

-

-

2 12 22

p

p

2 12 22

p

p

24

- o - - ,

Rose

,

,

s,

,

,

, s, no

Energia odnawialna,

- ISBN - - -

- - -

Theoretical analysis of the compression of fibrous agricultural materials,

- -

- -

- - -

25

-

Produkcja granulatu i brykietów w aspekcie cech

- Comminution properties of biomass

in forage harvester and beater mill and its particle size characterization- -

– – –

-

-

, – -,

- - -

26

IVO CELJAK, VÁCLAV VÁVRA, MILAN FRÍD, JOSEF FROLÍK

Abstract:

-3

Keywords:

Z

-

populus nigra L. x populus maximowiczii J- -

- V -

27

-

-

-

populus maximowiczii x populus berolinensis populus nigra L. x populus maximowiczii J-

populus maximowiczii x populus berolinensis

populus nigra L. x populus maximowiczii J- -

-

- -

3

3 3

-3

- -

- -

- -

28

-

-1)

hmoty s obsahem

-1)

Populus maximowiczii x populus berolinensis

Populus nigra L. x populus maximowiczii J-

Populus nigra L. x populus maximowiczii J-

-

- , -

- -1 20 -1 -1

-

3

3

-

- -

– -3

M

- - -X

- - -

-

29

-

:

30

2

MIROSLAV MACÁK, LADISLAV MARIÁN

- -

- -

,

Vo

31

-

- - -

– – – –

3 -

32

-

Ø

-

2

V

33

-

-

– – – – – – –

– - – – –

V

-3 - -3

CO

– V

34

V

Z – - -

- -

Štatistický parameter Hodnoty emisií CO2, mol.m-2.s-1

pred spracovaním pôdy po spracovaní pôdy Stredná hodnota 5.445 5.416 Chyba strednej hodnoty 0.172 0.157 Medián 5.64 5.145 Smerodajná odchýlka 0.687 1.354 Rozptyl výberu 0.472 1.834

-0.907 4.881 -0.542 1.763

Minimálna hodnota 4.08 3.44 Maximálna hodnota 6.26 11.36

87.12 400.75 16 74

Z

- - - -

V

35

-

- -

- - - - - - - - - - - - - - - - -

- -

– - -

CO

36

37

-

-

- - -

L

- - - - -

-

- - - - - –

- - -

- –

-

- -

- - - - -

38

LL

– JÁN SIMONÍK

_______________________________________________________________________

správnou intenzitou Intenzita mm

R

39

-

,.

.1.100 n

mi

n

mi

SiVi

ViViSiCuH %

,.

n

mi

n

mi

Si

SiViV

CuH - n - i -

Vi - - Si - - V - [Vi -V] -

– -

BAUER Linestar 168 LL

40

3 - - –

3 N -

41

-

-

V

-V -VI

Výsledok CuH, % 86,94

Vi -V -VI

Výsledok CuH, % 76,73

Pole 1 2 3 4 5 7 Prvé

meranie

Druhé meranie

42

– -

33

43

-

Parameter

Stredná hodnota, mm

Smerodajná odchýlka, mm Rozdiel max – min, mm

Minimum, mm Maximum, mm

(95,0%)

V

AL- – – –

-

- -

– – –

-- -

-

- -

-

44

– – -

- - -

--

- - LET

- - –

R – SIMONÍK

- SIMONÍK

- – -

-

- - – T

, , ,

45

-

JÁ *,

* ,

Abstract:

-

-

- -

-

h

46

-

, ,

333

- -

47

-

-

-

-

- -

-

- -

48

-- -

-

-

-

-

- - --

-

F

-

-

-

49

-

-

L

EMÁNEK, - -

- -

- - -

Savremena poljoprivredna tehnika - -

In Doktorska dizertacija - , ,

- J , FIN

, - , ,

- VITÁZEK, I -

EK, V

dresa:

, -

50

RELATIONSHIP BETWEEN TILLAGE AND SOIL MOISTURE IN VINEYARD INTERROWS WHEN USING AVAILABLE FARM MECHANIZATION

BARBORA BADALÍKOVÁ1 2

1Agricultural Research, Ltd. Troubsko, Czech Republic 2

Abstract: Possibilities of vineyard interrow tillage and application of crushed grapevine chips

(Czech Republic) within the period of 2008 – 2010. Altogether three experimental variants were analysed from the viewpoint of their effects on water retention and the content of soil moisture. The obtained results indicate that variants with organic material either incorporated into the soil or used as mulching material retained more soil moisture than control (i.e. without organic matter). This means that the incorporation of crushed grapevine chips into the soil increases its infiltration capacity and improves the retention of soil moisture for a longer time interval. Keywords: soil moisture, grapevine chips, soil tillage INTRODUCTION As far as the water content is concerned, the method of tillage is very important because it contributes to the establishment of either positive or negative soil water regime. Both infiltration and antigravitation movement of water in soil can be regulated by changes in or modificaton of the soil environment so that it is possible to control the overall soil water regime. Although a deeper tillage reduces surface runoff in the spring season and assures higher water reserves in soil, it also reduces the reserve of productive water and this shows a negative effect on growth and development of plants during periods of reduced precipitations and/or draught. By tillage we can therefore influence the soil water regime, i.e. not only its infiltration but also the redistribution and preservation of wataer

s also possible to influence the soil drainage Matula (2003) found out that tillage plaid a

siginificant role in changes of hydrophysical soil properties and, above all, in the saturated hydraulic conductivity (Ksatconditions principially influence all systems of soil cultivation. The basic objective of tillage operations is to maintain an optimum level of soil moisture on the one hand and a good supply of cultivation measures are performed above all with the aim to kill and liquidate weeds and the interrupt soil capilarity by disruption of the soil surface layer. As already mentioned by many authors, it is well-known that the reserve of productive water is dependent on the content of organic matter in soil because it has a high retention capacity and can retain water for longer time intervals. This means that it is quite necessary to process and recycle all residues of organic matter. At present, there are various methods of crushing and mulching of woody residues, which can either remain on the soil surface or be incorporated into the top layer of the soil horizon y it is therefore possible to improve the water-binding capacity of soil and to alleviate the densification and compaction of subsoil. The incorporation of grapevine chips into the soil is one of possible methods how to supply organic matter into soil and how to maintain soil

grapevines t, the most usual method of grapevine treatment was to remove it from interows and burn it in vain outside the

51

M -

crushing directly in interrows and recyclation either as mulching material or as a source of

years, this incorporation is beneficial and increases the stability of soil texture even after the movement of mulching machinerincrease the retention capacity of soil. The incorporation of any kind of organic matter into soil thus enables not only to maintain the crumbly soil texture with a great number of valuable aggregations but also to improve the retention capacity due to the formation of numerous pores and micropores (Duvigneaud, 1998; Burg The aim of this study was to evaluate the effect of incorporated organic material (i.e. crushed woody canes) on soil humidity. MATERIAL AND METHODOLOGY Within the period of 2008 – 2010, possibilities of soil cultivation in vineyards situated in wine-investigated with regard to incorporation of cane woody chips into the soil surface layer. Altogether three experimental variants were established in each locality to evaluate the effect of grapevine chips on physical, chemical and biological properties of soil. The content of water in soil was assessed and evaluated in all three experimental variants.

Variant 1 – Control, without incorporation of woody grapevine chips Variant 2 – grapevine (chips) into the depth of 0.10 m Variant 3 – Crushed grapevines (chips) + grass left on the soil surface as mulching material The minimum total length of each variant was 100 m; their width corresponded with the distance between individual rows. s sampled from two depths, viz. 0 – 0.15 and 0.10 – were taken from three depths, viz 0 – 0.10, 0.10 – 0.20 and 0.20 – 0.30 m. All samplings were performed at the beginning and to the end of the growing season.

Thereafter they were dried at 105 0C for 8 hours, cooled and weighed again. The weight percentage of water content was calculated using weights of fresh and dry soil samples. Charcteristics of both experimental localities The wine-growing municipality is situated in the maize-growing region and belongs into the warm and dry climatic region. The altitude is up to 200 m and soils are classified as chenozem developed on the loessial subsoil, with loam to clay-loam texture and a marked proportion of dust particles. The wine-growing municipality is also situated in the maize-growing region and belongs into the warm and dry climatic region. The altitude here is also up to 200 m and soils are classified as alluvial fluvisols with loam to sand-loam texture. . RESULTS AND DISCUSSION After winter pruning, the woody grapevines can be liquidated using a number of

Burg, 2010); after the treatment they are usually carried away. These technologies, however, are mostly rather expensive and result in the export and subsequent defficiency of valuable organic matter. The incorporation of organic matter in the form of cane chips increases the value of soil structure coefficient and this then results in a reduced risk of

52

Data about soil recorded in individual variants of grapevine recycling in the locality

within its profile and there were also changes in idnvidual variants at the beginning and to the end of the growing season. An increase in soil moisture in the middle and bottom soil layer was observed in Variant 2 while in the control Variant 1 it was increased in near the surface. This was caused by the mulch layer, which protected the soil against too intensive drying off (above all at the beginning of the growing season). Differences between individual years were affected by the annual course of weather. individual variants were rather similar. Decreased contents of soil humidity were observed in upper soil layers in all experimental variants; this was caused above all by the sand-loam texture of soil. Also the content of soil humidity was lower than in 2009, particularly low precipitations were manifested also in a decrease in soil humidity,

ol (Variant 1), a decrease in soil humidity was recorded in both experimental localities. Table 1 – – 2010)

Table 2 – – 2010)

Trends of average contents of soil water in individual experimental variants in the

regression equations indicate higher soil moisture contents in Variant 2 (i.e. with crushed

were observed in Variant 3 (with crushed grapevines mixed with grass), and in Variant 2. udy perioed were

different soil types and partly also by the locality. The course of trend flowlines was similar and the regression equations indicated in Variants 2 and 3 similar contents of soil moisture. This can be explained by the fact that incorporated grapevine chips function wirhin the soil profile as a source of organic matter

Beginning of the growing season growing season

Beginning of the growing season growing season

Beginning of the growing season growing season

0.0-0.10 7.78 16.38 19.680.10-0.20 15.12 16.13 10.02 10.65 16.93 20.780.20-0.30 18.37 15.01 19.170.0-0.10 17.89 13.31 7.72 22.200.10-0.20 16.80 11.80 16.76 20.160.20-0.30 19.25 11.30 12.08 19.780.0-0.10 19.55 16.19 8.13 19.900.10-0.20 15.33 16.25 9.87 18.220.20-0.30 17.55 17.65 10.23 20.23

1

2

3

2010

weight % weight %

2009

weight %

Variant depth(m)

2008

Beginning of the growing season growing season

Beginning of the growing season growing season

Beginning of the growing season growing season

0.0-0.10 19.07 17.08 8.26 13.90 11.060.10-0.20 19.13 17.15 11.07 6.12 13.83 12.370.20-0.30 19.05 17.60 6.16 13.31 12.100.0-0.10 8.12 5.05 11.570.10-0.20 19.22 20.13 11.56 6.65 15.11 12.810.20-0.30 18.67 12.66 7.85 13.790.0-0.10 19.87 7.26 16.92 9.190.10-0.20 20.05 11.38 5.27 15.67 10.720.20-0.30 20.32 19.83 12.33 5.78 13.68 10.77

1

2

3

Variant depth(m)

2008 2009 2010

weight % weight % weight %

53

M -

so that it enables a good infiltration and a long-term retention of water. Organic matter not only shows a positive effect on the content or soil moisture but also on the resistency of soil to compaction.

Figure 1 – Trend of soil humidity content in individual years

and different experimental variants –

Figure 2 – Trend of soil humidity content in individual years

and different experimental variants –

of presence of organic matter in soils exposed to the compaction caused by the movement of heavy machinery on the soil surface. Use of machinery for the cultivation of vineyards is important not only with regard to the extension of the age of vineyards but also from the viewpoint of maintenance of the soil fertility and yielding capacity. Machinery for cultivation of interrows is used for weed killing, application of mineral fertiisers and green manure, and destruction of the surface crust (to improve the infiltration capacity of soil). This destruction can be done with skive cultivators, disk stubble ploughs and/or rotary cultivators. Deep cultivation, soil loosening, and aeration of soil horizon can be done with heavy blade cultivators and deep tillers. Orgamic matter can be incorporated into the soil also by means of spade ploughs and and

Variant 1: y = 8.073x2 - 30.84x + 38.81R² = 1

Variant 2: y = 6.947x2 - 26.95x + 37.57R² = 1

Variant 3: y = 5.624x2 - 21.53x + 32.77R² = 1

0,00

5,00

10,00

15,00

20,00

25,00

2008 2009 2010

wei

ght %

1

2

3

Polyg. (1)

Polyg. (2)

Polyg. (3)

Variant 1: y = 7.472x2 - 32.59x + 43.30R² = 1

Variant 2: y = 7.959x2 - 34.81x + 46.43R² = 1

Variant 3: y = 8.772x2 - 38.74x + 50.11R² = 1

0,00

5,00

10,00

15,00

20,00

25,00

2008 2009 2010

wei

ght %

1

2

3

Polyg. (1)

Polyg. (2)

Polyg. (3)

54

ay it can be assured that the soil environment will be destroyed for at least.. CONCLUSIONS Results of these experiments enabled to evaluate effects of grapevine chips

localities with different soil conditions within the period of 2008 – altogether three variants (i.e. control, incorporation of organic matter into the soil, and its applicaton on the soil surface). The obtained results indicated that Variants 2 and 3 with incorporated organic matter and mulching, respectively, were able to retain more moisture than control Variant 1 (i.e. without the application of grapevine chips). This means that organic matter showed a positive effect on soil humidity in both experimental localities. The incorporation of crushed grapevine enables a good infiltration of water into the soil and its retention for a longer time interval.

National Agency of Agricultural Research, Ministry of Agriculture of the Czech Republic. References:

– -

978-80-87091-06-7

s. 20- -80-552-0380-5

- -6013

characteristics of soils.

, Praha, 2009, s.50- -80-213-1897-7 . 2., 1998, Vyd. Praha Academia

. Reiskirchen.

Plant

49 –306

- -80- -31-8. 1.vyd. Olomouc, 2010, 220 s.

-80-87091- -2 Contact address:

Republic, e- badalikova@vupt.cz

55

M -

KLIZNI TRVALÝCH TRAVNÍCH

AV VÁVRA

Abstrakt:

Na louce s

ale je

.

na 50 dB. K -

-12 dB nebo obsahuje-- -5dB.

C

i a jeho i

-

--

j

–sluc

56

tzv. „AeqT

n

i

LiTeqA

itT

L1

.1,0, 10..1log10 [dB], (1)

LAeq,T T[s], ti i [s]; n

trv

s MATERIÁL A METODIKA

d

n z eza

stej

M

mikrofonem a zesilova em. Funkci a

Nam

soupravy.

57

M -

rychlos -1600-z Tab. 1 –

tlak teplota

vzduchu vzduchu rychlost

v tru sm r v tru

1013 hPa 75 % 2 m.s-1

M byla

pozemku.

hluku (

- (1 -

VÝSLEDKY A DISKUZE Stanovišt

- 2:

okra

ekjsou vyobrazeny v grafu

3:

51,7 dB (viz tab. 2 hodnota v

tit. Z

58

Tab. 2 –

[m] hladina [dB]

1 1 - - 37,5 2 1 8 97,8 37,5 3 2 - - 39,1 2 50 67,1 39,1

5 2 58,0 39,1 6 2 165 51,1 39,1 7 3 - - 8 3 300 9 3 313

10 - - 11 8 12 38 77,3

4:

s

59

M -

asov promAeqT

- -2(2009).

Obr.2 - od zdroje hluku – eza

Obr. 3 -

3 lost intenzity hluku

graf na ku ).

0

20

40

60

80

100

1201 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

109

115

121

127

133

139

145

151

157

163

169

175

181

313

165

104

5038

88 2,61218,92842,763,960,3

0

50

100

150

200

250

300

350

60

-

koeficientem P

ZÁV R

(louky s

prostor staveb a chr

sklizni p sobil pouze

k

v

modifier of the relation between noise annoyance and incidence of ischaemic heart disease. London, 2003, vol.60, s.739-

-0711

R2

0

20

60

80

100

120

0 50 100 150 200 250 300 350

61

M -

– Ausgewählte Kapitel.

-3-8169-2788- -201-0020-

2

-7071-185-X. -01-01306-5.

-901936-2-5

-300-11.12.01-

-1 Akustika –

-2 Akustika –

-prostredi/zakladni-informace-o-monitorovani-hluku

(8.3.2011)

:

sistkova@zf.jcu.cz;

vavra@zf.jcu.cz;

62

Abstrakt:

republiky

ÚVOD

M

vzduchu. K povrchu chodby. V

s

MATERIÁL A METODY

k

63

M -

2

s 2

do hodby byla

m.s-1

je, kde kejda

s

Koncentr -

VÝSLEDKY A DISKUSE

3

film na povrchu chodby.

Obr. 1 – Graf koncentrace amoniaku

koncentrace NH

0.00

5.00

10.00

15.00

20.00

25.00

30.00

22.6.10 22.6.10 22.6.10 22.6.10 22.6.10 22.6.10 22.6.10 22.6.10

konc

entr

ace

NH

(m

g.m

)

64

Z

kg.ks-1.rok-1. 30 – –

lopatou po povrch

hale s

-3. Graf koncentrace amoniaku z

Obr. 2 –

-3 .

KONCENTRACE AMONIAKU

0.002.004.006.008.00

10.0012.0014.0016.0018.0020.00

konc

entr

ace

NH

(mg.

m)

65

M -

Obr. 3 –

Z t

Obr. 3 –

-3. Z

KONCENTRACE AMONIAKU

0.002.004.006.008.00

10.0012.0014.0016.0018.0020.00

11:00 11:10 11:20

konc

entr

ace

NH

(mg.

m)

KONCENTRACE AMONIAKU

0.002.004.006.008.00

10.0012.0014.0016.0018.0020.00

10:10 10:20 10:40 11:00

konc

entr

ace

NH

(mg.

m)

66

Z

pro chov skotu. Z

z

:

NÁVAROVÁ 3

2001, s. 59–62. , J., G.J.,

-388

, ,

– , e- miroslav.cespiva@vuzt.cz , petra.zabloudilova@vuzt.cz

67

M -

TNOSTÍ

Abstrakt:

komp

vlastnosti

ÚVOD

by si kompost zasluhoval. Jednou z

k

kompost s MATERIÁL A METODY

.

ky.

vlhkost. (20

) Z suroviny

2

a

68

v cesu,

[kg.m-3], pórovitost [%],

V

.

aj v – kg.m-3

1) 3

vlhkosti. 2)

.

3) z

321 ....

mkgVn

mmmm n

v (1)

m1, m2 n – n – –] mv – -3] V – [m3]

69

M -

Pórovitost surovin, resp.

v

komp

v rozme-

mog en i t y

-li tyto suroviny ve fo

na jejich

roz

-

1) 3

vlhkosti.

70

2) kompresorem.

3) 1

5) p2 6)

%1002

21

pppM (2)

p1 – p2 – 7)

8) 9) 10)

L

1,3,5 – 2 –

– 6 – vstup od kompresoru, 7 – 8 –

pórovitosti surovin

i kompostu, p

suroviny v

– Vlhkost je stanovena z

na d

71

M -

velikost ok 5×5 mm. Z s

exsik

%100

1001

2

mmm

x V (3)

m1 – m2 – mV –

. K

( 3).

Obr. 3 - 50

V

4).

-

72

V

– v

pr

V

pórovitost, vlhkost surovin,

Vzhledem k

Z

VÝSLEDKY A DISKUZE

1)

2)

3) .

73

M -

74

75

M -

76

stabilizovanou organickou hmotu s

k

nedostatkem humusu s

vlastnosti. K –

www.vuzt.eu dispozici metodika

v tomto v

NAZV „

A. PLÍVA. P. – . -

-211. -80-552-0380-5.

PLÍVA. P.: . [Where it is possible to compost in belt piles]. -26 -2391.

University of Wisconsin-Madison, March 29, 2002 PLÍVA. P. .

-80-86726-32-8.

- -23-X

161 01 Praha 6 – 022 www.vuzt.cz, roy.amitava@vuzt.cz

161 01 Praha 6 – www.vuzt.cz, stanislav.laurik@vuzt.cz

77

M - Zvláštní vydání

MIROSLAV KAVKA, VÁCLAV CINIBURK. MIROSLAV MIMRA

t

M, H T

M 1

H 1 T –

1 .

A. V

4.

6.

- - ].

- ; l.t- ].

- - ]

78

- - ]. - - ]

– - - -

PU – -

- - ]. –

- - ]. 4. HZ –

- - ].

a b t

Z

Z –

– –

4.

z

79

M - Zvláštní vydání

- - ]

- ] - ]

- ]

- ]

h*ha

-1

CHO

H

M

-1

CHO

H

M

-1

CHO

HM

-1

CHO

HM

*ha-1

CHO

H

M

*-1

CHO

H

M

80

- - ]

VN ONVN ZM

VN ONVN ZM

VN ONVN ZM

*ha

-1

H M H M H M H M

VN ON VN ZM VN

CHO

*-1

H M H M H M H M

VN ON VN ZM VN PH VN S

CHO

VN ONVN ZM

VN ONVN ZM

81

M - Zvláštní vydání

- - ] 6.

V

v

L ABRHAM, Z.,

HAVRLAND, B. - . -

VN ONVN ZM

*ha-1

VN PU HZ

HM

*-1

VN PU HZ

HM

82

KAVKA, M. – CINIBURK, V., -

. AGRIC. ECON. – CZECH, –

–.

-

-

, , -

83

M - Zvláštní vydání

V

z

v

v

M , PM

- -

v -

PM v –

84

v – –

.

- -

S

S

z . Z

V

v

1 2 3 4

6 7

85

M - Zvláštní vydání

- -3

m3 -1 PM10 PM PM10 PM

1 2 664 3 4 68 89

6 7 648

-

v

- - -1 -1

10

1 2 3 4

6 7

- -

V v

. V -- –

- - -

-

-

PM -

86

Z -

W.,

- - R,K.M., MUNILLA,R.D., WILLIAMS,C.M., SCHIFFMAN,S.S.

(

- CHARDON,W.J., - - -

,

- VAN LEEUWEN,R.F.X.,

-

-

886 -

87

M - Zvláštní vydání

V

– –

ny v

– -T2

K

88

v

-

( - -

84

( - –

-

-

89

M - Zvláštní vydání

– ECOWOOD

90

PLÍVA, P., LAURIK, S.

[

. ISBN - -86884- -

PLÍVA, P.

– PLÍVA, P., [

- - - - - -

PLÍVA, P. - - - -8.

91

M - Zvláštní vydání

v

.

92

(

93

M - Zvláštní vydání

v

=gradr0div - [- [V]

-

0

z

1

1 dlgradU

C

U

-

94

V

z

95

M - Zvláštní vydání

- –

- -

– 6.

-

-

-

OSMAN, A. M., SAVOIE, P., GRENIER, D., -

- - -

- - -9.

-–

-

- –

96

-

--

- - -< >.

- -

– -

97

M - Zvláštní vydání

V

MILAN FRÍD, VÁCLAV VÁVRA, IVO CELJAK, JOSEF FROLÍK

,

-

®.

98

99

M - Zvláštní vydání

®.

Z

149 434 139 194 169 877 -

-

341 961 1235

11

®

®.

®

100

K

v

v

;

. ; ;

101

M - Zvláštní vydání

U

OCHÁZKA,

-

v

102

X

-

-

-

dy.

,

103

M - Zvláštní vydání

– –

-

4 ****

****

****

****

104

.

Z í ly

í

105

M - Zvláštní vydání

.

-

4 ****

****

**** ****

****

106

9.

,

BENGOUGH A.G., MULLI–

-

-

,

, -

107

M - Zvláštní vydání

PZ

GEODIS BRNO

- -

v

v

108

--

- -

48

– -- –

-

-

109

M - Zvláštní vydání

Z-

<

110

FERWERDA, J. G., SKI GA, O.

- GOJDA, M HABOUDANE, D., MILLE E., ZARCO- CHAN, I. B

– S, E. & DE BAERDEMAEKER, J

- -94.

ZHANG, P., ANDERSON, B. - -

- -

111

M - Zvláštní vydání

POROVNÁNÍ TECHNOLOGI

– – – –

-

-

ÚVOD

Z

v

- v MATERIÁL A

112

- - - Setí -

-

– - – - - - - - -

– e – –

A DISKUZE – -

– -

-

- Z

-

[ - ]

[ - ]

[ - ] ce

[ - ] 4

3. 5

113

M - Zvláštní vydání

-

Z

- v

-

T

[ - ]

[ - ]

[ - ] [ - ]

4

3.

-

[ - ]

[ - ]

[ - ]

[ - ]

4. Z

Z –

– -

114

- -

-

-

- ]

- ]

-

]

[ - ] 3

3. 3

-

- -

v - - - -

- - -

115

M - Zvláštní vydání

-

116

RESEARCH OF CORRELATION BETWEEN ELECTRIC D

all

-

INTRODUCTION

-

-

a

-

117

M - Zvláštní vydání

- -

2 - Me

- - -

– –

-

R = V.I-1(r)

ohm.m r = 2 d R = 2 d V/I d m C = 1/ R

ohm-1 = siemens c = 1/ r ohm-1 m-1 = siemens m-1

c = 1/ (2 d R) = I / (2 d V) -

t

118

RESULTS AND DISCUSSION

– – – –

-

mean standardized root-mean-square standardized

2 - –

]]

]]

]]

- –

]]

119

M - Zvláštní vydání

4 - – – –

- – –

– – –

le 3 - –

3 - – -

120

le 4 - -

]]

]]

le - -

– – – –

– – – – – –

and

121

M - Zvláštní vydání

– – – –

– – – –

– – –

– – – –

- – – –

122

- – –

-

CONCLUSION

- -

n

– -

123

M - Zvláštní vydání

-

– -

- -

-

-

-

-

124

V V

-

-

ÚVOD

-

125

M - Zvláštní vydání

- -

- -

-

-

- -

-

19,1 19,2 20,618,9 18,7 20,418,5 18,3 18,7

234

4 24

126

-

- -

- - - - - -

- -

127

M - Zvláštní vydání

-

ep. na

3 ) ) ) ) )

2322

34

3332

4

32

24

128

- 2010

2432

4

3

22342

2333

- -

129

M - Zvláštní vydání

- -

- -

- L

– - - - -

-

-

- -

-

-- -2 - -

-

- - - - -

- -

-

- -

e-

130

2

2

ÚVOD

Praze -

131

M - Zvláštní vydání

-

-

-

K D3

K v - - z

- ]

sady

132

-3]

- - -

- - - - 2 - -

- - -

v

K

D3 – D2

D1 K

-

-3]

133

M - Zvláštní vydání

D1 a D2.

-3]

- – –

-3]

- – –

d - -

134

K

- -–

-

-

135

M - Zvláštní vydání

2 2Z

-

ÚVOD

- – -

- - - -

-– 4

v - -

136

v -

-

-3 --3

- -3

- -

- .

-

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8

)

mm

)

rok 2008 rok 2009 rok 2010

137

M - Zvláštní vydání

-

-

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8

)

mm

)

rok 2008 rok 2009 rok 2010

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8

)

mm

)

rok 2008 rok 2009 rok 2010

138

-

-

-3

z- -

e v v

2

3

4 var 2var 3

139

M - Zvláštní vydání

- -

- - - -

-

140

HODNOCENÍ KVALITY ZP ZÁVISLOSTI NA ROVNOM

Abstrakt:

ÚVOD

-

-

141

M -

MATERIÁL A METODY

142

-

-

- - - - - - - - - - 5 5 - -

[g.m

-2]

- - - - - - - - - - 5 5 - -

[g.m

-2]

143

M -

-

-

-

144

-

-

-

145

M -

-

-

:

146

:

-

-

-

--

-

147

M -

Abstrakt

ÚVOD

MATERIÁL A METODY

- -

148

– –

-

- - - -

- +-

- - -

149

M -

- -

150

-

- - - -5

J - < -

- - - --

[kW

h.kg

-1]

151

M -

INDIKÁTORY VODNÍ ERO

Abstract:

ÚVOD

MATERIÁL A METODY

152

-

-

-

-

- -

-

153

M -

- -

-

-

154

-

-

– –

155

M -

-

-

- -

-

156

-

-

157

M -

- - -

-

- -

-

- - -

-

-

158

NASADENIA TRAKTORA MONITOROVACIEHO SYST NA BÁZE GPS

Abstrakt

ÚVOD

- I

.

-

MATERIÁL A METÓDY

159

M -

-

S -

– –

– – –

– -

– O

– -

– O

160

– – –

S –

h ha Parcela

– -1

- - -

161

M -

T1 T3A T3B T3C T3D T3E T3F T3 T6A T6B T6 TS

162

163

M -

-1 km.h-1

S

- - -

164

-

ZÁVER

– – – –

T136,20 %

T352,10 %

T611,70 %

165

M -

L

- -

– - - -

– – –

- - - -

- -- - - - -

– - - - -

- - -

. - -

– - - -

– -

– - - -

-

166

Abstrakt:

-

ÚVOD

- -

MATERIÁL A METODY

- -

-

167

M -

-

-

– - - -

- - --

168

-

169

M -

-

5 -

170

-

5

55

-

171

M -

R

-

:

-

- - - - -

- - - -

- - -

– - -

172

SVOZ

Abstract:

ÚVOD

MATERIÁL A METODY

173

M -

- -

- - -

- -

- - - S

1000celková

mqq

BRO zeleBROzele

zele

mqS

174

Obec

[ha]

-1]

BRKO - min.

-1]

BRKO - max.

-1]

Celkem 39 228 756 11 340

Obec

Ø

-1]

BRKO celkem

-1]

[ha]

[t k1]

BRO

celkem 1]

Celkem 17 30 776

175

M -

Obec VOK stabilní

Celkem 26ks

-

176

L :

- - - - – –

- - - -

sa:

- - -

- - -

177

M -

STEBIEL NA ENERGETIC ELY A NIEKTORÉ POZNATKY PRI ICH SPA

Abstrakt:

ÚVOD

-

MATERIÁL A METÓDY

178

Menert- Šali

18 % 38 %

TESTO 350 M/XL

179

M -

C –

– –

-

- -

180

181

M -

-

-

-

-

2

182

NO2

183

M -

ZÁVER

L

– –

- - -

– – -

- - - - - –

- - - -

- -

– – –

184

185

M - Zvláštní vydání

POROVNANIE KVALITY P

PAVOL FINDURA, JAN TURAN*, PAVEL ZEMÁNEK* *, ONDREJ KURUC, MARCEL PRÍSTAVKA

S

Z

v

-

,

pFINDURA

HEUSSER

- -

NOZDROVICKÝ

MATERIÁL A

Z

s

186

A. B.

- - -

v –

187

M - Zvláštní vydání

-

p

- - - - - -

-

- - o o

188

0,5

1

1,5

2

2,5

3

5 10 15 20 25 30 35 40 45 50

-

v v

A

B

189

M - Zvláštní vydání

- - -

-

á

PRED PO PRED PO VPRED VPO

-

po - po

, Vpo

s po

190

T1 T1

T1T2 T2T2

R R

R

0

10

20

30

40

50

60

8 10 12

0

2

4

6

8

10

12

14

16

18

20

25 75 125

- – o, T – o, R –

– -

-

k

191

M - Zvláštní vydání

ZÁVER

Z

v – -

Z

-

- - -

- - - - -

--

kvalitu podmítky – -

- -

- - - - - -

, Slovenská

192

NA

k

K

-

od

193

M - Zvláštní vydání

-

- 4

ek

- -

v

UV

-

k

-

194

- -

- – - DC

– -

v

k

ste

-

195

M - Zvláštní vydání

- –

0,005,00

10,0015,0020,0025,0030,0035,0040,0045,0050,0055,0060,0065,00

0 1 2 3 4 5

Zast

oupe

ní [%

]

196

- –

Z

v

- –

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

55,00

0 1 2 3 4 5

Zast

oupe

ní [%

]

197

M - Zvláštní vydání

- –

- – vysoká k

198

- –

v

v

- -- -

-

- -

199

M - Zvláštní vydání

-

, –

- -

200

MILAN KROULÍK , MARTIN DLOUHÝ , JAN

- -

-

S

-

-

201

M - Zvláštní vydání

-

-

-

-

-

-

Moto L Moto R Co p ss

Systen ent

D spl y,eepe D t l I O

Sp ye

Son

CAN - RSonve te

M n o p te, L n

IP e L se s neS k LMS

CANopen RS

Et

ene

t

Et

ene

t

US

B

US

B

PS T k n n tSM

202

- - - - - -

-

-

203

M - Zvláštní vydání

nd

on -

- - -

-- - - -

-

- - - -

S,

204

-- - - -

,

205

M - Zvláštní vydání

THE USE OF AGRICULTURAL WASTE FOR BIOGAS PRODUCTION ON THE EXAMPLE OF MODEL INDIVIDUAL FARMS

l

INTRODUCTION

206

Source: author’s design

Pa

[%] 8 – –

[% DM]

68 – – – – 86 –

N [% DM] – – – 6 – NH4 [% DM] – – – – P2O5 [% DM] – – – – K2O [% DM] – – – –

– – Source: author’s elaboration based on [4]

-

-

207

M - Zvláštní vydání

- -

-

-

-

-

·t-

- –

6 Source: author’s elaboration based on [16]

- - -

- -

208

4

%

·t- ·t-

8 – – – –

– 86 – – –

68 – – –

– – – – Chicken

– – –

– – – – – – – – –

– – – – – – – – – – – – – – – –

Source: author’s elaboration based on [4, 12]

·t-

-

209

M - Zvláštní vydání

Source: author’s elaboration based on [4, 12] RESULTS AND DISCUSSION

= = 1

– A – -

– - –

= log 1+log (1+ ) –

210

- --

-

-

= +

– – -

- -

·d-

-

- - - -

- - - - -

- - -

- - - - -

– –

211

M - Zvláštní vydání

– ·d-

·t- ·t- ·t-

= . . . . . –

– - –

212

– –

·t-

·t-

86

Source: author’s elaboration based on [4, 12]

- - ·t- -

-

-

213

M - Zvláštní vydání

Source: author’s design

CONCLUSION

-

-

-

-

-

-

-

0

10000

20000

30000

40000

50000

60000

70000

80000

m3/t·year

Pig manure

Pig manure + maize silage

Maize silage + sugar beet

Pig manure + maize silage + sugar beet

214

– –

- -

-

-

-

-

-

- -

- -

215

M - Zvláštní vydání

POLISH CONDITIONS

Ktech - - Kmat - - Kagr - - Kpal - - Kr - - Eek - Kpr - - Cbu - - - pbu - - Ps - - Etech - - Emat - - Eagr - - Epal - - Er - - Eee - Eprod - - Eprz - - INTRODUCTION

-

216

-

-

-- –

- - - - -

-

- - -

- - -

rpalagrmattech KKKKK -

pr

bubu

pr

sek K

CpKPE

-

--

rpalagrmattech EEEEE -

prod

przee E

EE

217

M - Zvláštní vydání

-- - – -

- -

- -

- - - - -

- -

- - - -

- - - -

- - - -

- - - -

-

-

% - % -

% -

% -

- - - -

- - - -

--

\ - - - -

-

-

218

- - - -

– -

- - -

- -

- -

- % - % - % - % - %

- - - -

- - -

- - - -

--

219

M - Zvláštní vydání

- - - -

- - - -

--

- - - - -

– - - -

- -

- % - % - % - % - - - - -

--

220

- -

- -

- % - % - % - % - %

- - - -

Table 6 – Energy efficiency ratio in the tested farms

- - -

- - - -

CONCLUSION

-

- - - -- - -

- - - -

-

-

-

221

M - Zvláštní vydání

- -

-

-

222

THE INFLUENCE OF TILCOMPACTION ER

T

Key

223

M - Zvláštní vydání

I

-

ptSLhVkP

V – S – t – – – - –

ohhGOGO 1

2

– -

224

– –

– –

– – – – – –

– – – - – –

– – – – – – –

– – – – - – –

– – – – –

– – – – – – – –

– – –

i

6

225

M - Zvláštní vydání

- -

– Table 1 – Characteristic of soil material

– –

% - % % %

– – –

– P – –

-

8

8

OS [kPa]

226

-8

-8

– P

P – – – P –

-

– -

kP [cm2]

R

R

P

227

M - Zvláštní vydání

- – -

-

– -

– – –

– P – –

WNIOSKI

-

– –

-

P

GO-3]

228

-

– –

– –

229

M - Zvláštní vydání

POLSCE H UE W LATACH 2000-2008

USE OF RENEWABLE ENE

AND IN SELECTED EU C S 2000-2008

– –

– -

I

I

230

– -

-

– -

-

– -

-

231

M - Zvláštní vydání

232

233

M - Zvláštní vydání

– –

234

WNIOSKI

– –

- - - - - -

- - - -

--

- -

-

235

M - Zvláštní vydání

HO

k

ÚVOD

v

236

– – – – – – -

-

237

M - Zvláštní vydání

– – – –

-

-

6

8

Z ní

y

y y

238

S - -

-

S - -

-

S - -

-

y –

y

v -

239

M - Zvláštní vydání

– –

R - - -

S = R =

S = R =

S = R =

6 8

--

S S S

240

HODNOCENÍ PRACOVNÍHO STROJNÍCH SOUPRAV NA

MILAN

Abstrakt:

ÚVOD

z

-

z

241

M -

s

-

242

s

s

- z

243

M -

-

Z

- s

244

-

- –

c

245

M -

Literatura:

- - -

-

246

Abstrakt:

ÚVOD

z

247

M -

3. SEKACÍ

248

VÝSLEDKY A

249

M -

á

Mk

Mk

-

250

Z

Z

Literatura

- - - - -

- –

- - -

- -

- - - -

- - -

251

M -

Abstract:

-

- - -

252

- -

-

; ; ;

ccm

I ccm

253

M -

Results

254

- N P

EM

- N P

EM

255

M -

-

– -

-

-

– ALLEN

References:

- - -

- -

- - - - -

- - -

-- - - -

256

U

Abstract: -

-

-

-

ÚVOD

-

257

M -

METODY

- - L

-

- - - - – - - –

z

258

– – – –

– – – –

– – – –

259

M -

– –

– –

-

s –

260

"

Literatura:

-

- -

- -

- –

- - - –

- - -

261

M -

VOST

Abstract:

– -

-

K ÚVOD

-

- – -

s Z

– -

262

-

Z

-

-

– -

- – – - – - – - – - – - –

-

- -

263

M -

-

– –

-

t.ha-1

(t)

200 400 600 800 1000 1200 1400 -1

60

90

Z -

- -

- - - -

-

-

m

264

- m

- -

"

Literatura:

- -

- - - - -7 Z

- - -

- -- -

-

- - - -

- -

-

265

M -

z – s -

– - - - -

266

ELE PRO NÍZKOU KONSTRUKC

Abstrakt:

:

ÚVOD

-

k

-

267

M -

-

Z

1 Lze se setkat i s

268

– – –

269

M -

– –

-

270

– – – – – – –

-

271

M -

-

-

272

– – –

s

273

M -

Literatura:

- - - - -

- – -

--

-

-- -

- -

-

-

274

-

-

ÚVOD

METÓDY

k

275

M -

– –

276

VÝSLEDKY A

- - - - - -

-

P

379,2 73,2 510,8 66,30 - - - - - - - - -

277

M -

STN 490103:1998

278

– –

– –

279

M -

-

– -

-

-

-

-

– –

-

- --

-

280

-

- -

- -- -

- –

- - -- -

- -

- - -

– – – –

- - -

– – – -

-

- -

- -

- - - - -

- -

- - - -

-- - - -

-

281

M -

T SENSOR -

Abstract:

-

--

he

R2 0 98 R2 0 99

-

-

-

282

s

ON

-

-

0

5

10

15

20

25

0,00,51,01,52,02,53,03,54,0

0 5 10 15 20

Pota

toes

mas

s, k

g

Elec

tron

ic c

ircu

it o

utpu

t vol

tage

, V

Distance covered, m

Measured output voltage, V

Potatoes mass including the soil's clods, kg

283

M -

es

-

s

s

27%

73%

Pure potatoes mass, % Soil's clods, %

284

-

T

I

-

References:

-

0,00

1,00

2,00

3,00

4,00

5,00

6,00

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0 5 10 15 20 25

Pota

toes

mas

s, k

g

Elec

tron

ic c

ircu

it o

utpu

t vol

tage

, V

Distance covered, m

Measured output voltage, VPure potatoes mass, kg

285

M -

ÝCH ECH

Abstract:

-

:

ÚVOD

A - -

286

- -

- -

mm

e

– –

– –

-

-

287

M -

-

A A A

288

Ze

Z

A A A

289

M -

Literatura:

-

– –

290

je komplex s , výzkum

norem

, mo- HL

: a

,

:

a

, –

: ; ;