KINEMATIKA HMOTNÉHO BODU - :.: Fyzika GJVJfyzika.gjvj.cz/ptacnik/res/1/1_1.pdf · Kinematika...

Post on 06-Feb-2018

235 views 1 download

transcript

KINEMATIKA HMOTNÉHO BODUMgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

Kinematika hmotného bodu

Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny

Hmotný bod - zastupuje těleso, má jeho hmotnost, nemá rozměry ( myšlenkový model )

Mechanický pohyb

Pohyb = změna polohy tělesa vůči jinému tělesu

Pohyb i klid jsou relativní - absolutní klid neexistuje

Závisí na volbě vztažného tělesa

Poloha hmotného bodu

Vztažná soustava - vzn. spojením vztažného tělesa a pravoúhlé souřadné soustavy

Pro popis polohy volíme vhodnou vztažnou soustavu - jedno-, dvou- nebo třírozměrnou

Průvodič = spojnice počátku vztažné soustavy a pozorovaného tělesa

vektor !r

Trajektorie HB

Trajektorie = Množina bodů, kterými HB při svém pohybu projde

Dělení pohybu podle tvaru trajektorie:

Přímočarý pohyb - trajektorií je přímka nebo její část

Křivočarý pohyb

Dráha HB

Dráha = délka trajektorie, kterou HB opíše za určitý čas

skalární fyzikální veličina

značka: s

základní jednotka: 1 m

Průměrná rychlost HB

Průměrná rychlost vp je podíl dráhy s a času t, za který HB tuto dráhu urazí:

!

skalární fyzikální veličina

základní jednotka: m∙s-1

další jednotky: km∙h-1, km∙s-1

vp =st

Příklad 1

Automobil projel tři čtvrtiny celkové dráhy rychlostí 90 km∙h-1 a zbývající část dráhy rychlostí 50 km∙h-1. Vypočítejte jeho průměrnou rychlost.

Příklad 2

Automobil jel tři čtvrtiny celkové doby jízdy rychlostí 90 km∙h-1, zbývající dobu jízdy rychlostí 50 km∙h-1. Vypočítejte jeho průměrnou rychlost.

Okamžitá rychlost HB

Velikost okamžité rychlosti HB v daném bodě trajektorie je definována jako průměrná rychlost ve velmi malém časovém intervalu na velmi malém úseku trajektorie.

Směr okamžité rychlosti HB je vždy ve směru tečny k trajektorii v daném bodě.

Okamžitá rychlost HBDělení pohybu podle rychlosti:

Rovnoměrný pohyb - velikost rychlosti se nemění

Nerovnoměrný pohyb - velikost rychlosti se mění

Okamžitá rychlost je vektorová fyzikální veličina

!v = Δ!rΔt

Rovnoměrný přímočarý pohyb

Velikost okamžité rychlosti je rovna průměrné rychlosti.

Platí následující vztahy:s=v ⋅ t

s= s0 + v ⋅ t

Rovnoměrný přímočarý pohyb

s[m

]

0

3

6

9

12

15

18

t [s]

0 1 2 3 4 5 6

v [m

/s]

0

1

2

3

4

5

t [s]

0 1 2 3 4 5 6

s0 + vt

vts [m]s0

Příklad 3

Tunelem o délce 700 m projíždí vlak dlouhý 200 m tak, že od vjezdu lokomotivy do tunelu do výjezdu posledního vagonu z tunelu uplyne doba 1 minuty. Určete rychlost vlaku.

Příklad 4

Chlapec jde ze školy rychlostí 1 m∙s-1.V okamžiku, kdy je ve vzdálenosti 100 m od školy, vyjede za ním spolužák na jízdním kole rychlostí 5 m∙s-1. Za jakou dobu a v jaké vzdálenosti od školy chlapce dohoní? Řešte výpočtem i graficky.

Příklad 5

Traktor a motocykl vyjedou současně proti sobě po přímé silnici. Počáteční vzájemná vzdálenost vozidel je 15 km, obě vozidla jedou stálou rychlostí. Rychlost traktoru je 10 m∙s-1, rychlost motocyklu je 20 m∙s-1. Za jakou dobu od startu a v jaké vzdálenosti od počáteční polohy traktoru se obě vozidla míjejí?

Příklad 6

Dva chlapci trénují běh na uzavřené dráze délky 400 m. Oba vyběhnou současně z téže startovní čáry týmž směrem. Chlapec A běží stálou rychlostí 5 m∙s-1, chlapec B stálou rychlostí 3 m∙s-1. Za jakou dobu chlapec A poprvé doběhne chlapce B? Jakou vzdálenost za tuto dobu uběhne chlapec A?

Skládání pohybů a rychlostí

Platí princip nezávislosti pohybů: Koná-li HB současně dva nebo více pohybů, je jeho výsledná poloha taková, jako kdyby konal tyto pohyby po sobě, a to v libovolném pořadí.

Řešíme graficky pomocí sčítání vektorů.

Početně řešíme speciální případy.

Příklad 7

Plavec, jehož rychlost vzhledem k vodě je 0,65 m∙s-1, plave v řece, která teče rychlostí 0,25 m∙s-1. Určete dobu, za kterou plavec doplave do vzdálenosti 72 m, směřuje-li a) po proudu, b) proti proudu, c) kolmo k proudu.

Příklad 8

Loďka má vzhledem k vodě rychlost 5,2 m∙s-1, rychlost proudu v řece je 2,4 m∙s-1. Pod jakým úhlem vzhledem k proudu musí loďka plout, aby se pohybovala kolmo k břehům řeky? Jak velkou rychlostí se přibližuje k břehu?

Příklad 9

Veslice plující po řece urazila vzdálenost 120 m při plavbě po proudu za 12 s, při plavbě proti proudu za 24 s. Určete velikost rychlosti veslice vzhledem k vodě a velikost rychlosti proudu v řece. Obě rychlosti jsou konstantní.

Nerovnoměrný přímočarý pohyb

Zrychlení - charakterizuje změnu vektoru zrychlení

vektorová fyzikální veličina

značka: a

základní jednotka: 1 m∙s-2

Průměrné zrychlení (skalár): a= Δv

Δt

Rovnoměrně zrychlený přímočarý pohyb

Vektor zrychlení má stejný směr jako vektor rychlosti.

Velikost zrychlení je kladná a konstantní.

Rovnoměrně zrychlený přímočarý pohyb

Pro velikost okamžité rychlosti při nulové počáteční hodnotě platí:

!

Pro velikost okamžité rychlosti při počáteční hodnotě v0 platí:

v=a ⋅ t

v=v0 + a ⋅ t

Rovnoměrně zrychlený přímočarý pohyb

atv0 + at

v [m

/s]

0

2

4

6

8

10

12

14

16

t [s]

0 1 2 3 4 5 6

v [m

/s]

0

2

4

6

8

10

12

14

16

t [s]

0 1 2 3 4 5 6

s[m]

Rovnoměrně zrychlený přímočarý pohyb

Pro výpočet dráhy rovnoměrně zrychleného přímočarého pohybu lze užít následující vzorce:

s=v0 ⋅ t +12⋅a ⋅ t 2

s= 12⋅a ⋅ t 2

Rovnoměrně zrychlený přímočarý pohyb

12at

2

v0t +12at

2

s [m

]

0

5

10

15

20

25

30

35

40

t [s]

0 1 2 3 4 5 6

Rovnoměrně zpomalený přímočarý pohyb

Vektor zrychlení má opačný směr jako vektor rychlosti.

Velikost zrychlení je konstantní.

Rovnoměrně zpomalený přímočarý pohyb

Pro velikost okamžité rychlosti při počáteční hodnotě v0 platí:

!

Pro výpočet dráhy platí:

v=v0 − a ⋅ t

s=v0 ⋅ t −12⋅a ⋅ t 2

Rovnoměrně zpomalený přímočarý pohyb

v [m

/s]

0

2

4

6

8

10

12

14

16

t [s]

0 1 2 3 4 5 6

s [m

]

0

5

10

15

20

25

30

35

40

45

50

t [s]

0 1 2 3 4 5 6

Příklad 10

Hmotný bod má počáteční rychlost o velikosti 10 m∙s-1 a pohybuje se po přímce rovnoměrně zrychleným pohybem se zrychlením o velikosti 3 m∙s-2. Jak velkou rychlost má po 5 s zrychleného pohybu?

Příklad 11

Rychlík jede po přímé trati rychlostí 108 km∙h-1. Před železniční stanicí začne brzdit a zastaví za jednu minutu rovnoměrně zpomaleným pohybem. Vypočtěte velikost zrychlení rychlíku.

Příklad 12

Řidič automobilu začne při rychlosti 20 m∙s-1 brzdit. Automobil se při brzdění pohybuje se stálým zrychlením o velikosti 4 m∙s-2. Určete dobu, za kterou automobil zastaví a brzdnou dráhu. Nakreslete graf závislosti dráhy automobilu na čase.

Příklad 13

Vůz, který jel rychlostí 72 km∙h-1, zvýšil během 10 s rovnoměrně zrychleným pohybem rychlost na 90 km∙h-1. Jak velké bylo jeho zrychlení a jakou dráhu při tom urazil?

Příklad 14

Z téhož místa se začnou současně pohybovat ve stejném směru dva HB: první rovnoměrně rychlostí 0,5 m∙s-1, druhý rovnoměrně zrychleně s nulovou počáteční rychlostí a se zrychlením 0,1 m∙s-2. Určete a) dobu, za kterou budou mít oba body stejně velkou rychlost, b) dobu, ze kterou urazí oba hmotné body stejnou dráhu. Řešte početně i graficky.

Volný pád

Zvláštní případ rovnoměrně zrychleného přímočarého pohybu:

nulová počáteční rychlost

zrychlení g - tíhové zrychlení

Tíhové zrychlení je pro všechna tělesa ve vakuu stejné.

Velikost g závisí na zeměpisné šířce a nadmořské výšce.

Normální tíhové zrychlení: g = 9,80665 m∙s-2 ( ≐ 9,81 m∙s-2)

Volný pád

Velikost okamžité rychlosti:

!

Dráha uražená za daný čas:

v= g ⋅ t

s= 12⋅g ⋅ t 2

Příklad 15

Míč padá volným pádem na zem z výšky 20 m. Jak velkou rychlostí dopadne míč na zem?

Příklad 16

Jakou dráhu urazí těleso během třetí sekundy svého volného pádu?

Příklad 17

Za jakou dobu urazí těleso druhý metr své dráhy?

Rovnoměrný pohyb po kružnici

Trajektorií HB je kružnice.

Rychlost má směr tečny ke kružnici.

Velikost úhlu v radiánech:

!

π rad = 180°

ϕ =sr

Rovnoměrný pohyb po kružnici

Úhlová rychlost = podíl úhlové dráhy, kterou opíše průvodič za danou dobu, a této doby.

!

Základní jednotka: rad∙s-1

Pohyb po kružnici je periodický pohyb.

ω =ΔϕΔt

Rovnoměrný pohyb po kružnici

Perioda = doba jednoho oběhu

Značka: T

Základní jednotka: 1 s

ω =2πT

Rovnoměrný pohyb po kružnici

Frekvence = počet oběhů za 1 s

Značka: f

Základní jednotka: 1 Hz

ω =2πf

Rovnoměrný pohyb po kružnici

Vztah mezi frekvencí a periodou:

!

Vztah mezi úhlovou a obvodovou rychlostí:

f = 1T

v=ωr

Rovnoměrný pohyb po kružnici

Dostředivé zrychlení:

nenulové kvůli změně směru rychlosti

vždy směřuje do středu otáčení ( kolmé na vektor rychlosti )

pro velikost dostředivého zrychlení platí:

ad=v2r =ω

2r

Příklad 18

Určete úhlovou rychlost hřídele, který koná 120 otáček za minutu.

Příklad 19

Kolo o poloměru 0,45 m se rovnoměrně otáčí s frekvencí 6,5 Hz. Vypočtěte úhlovou rychlost kola, velikost rychlosti bodů na jeho obvodu a velikost jejich zrychlení.