+ All Categories
Home > Documents > Libor Švéda 1 , Martina Landová 2 , Martin Míka 2 ,

Libor Švéda 1 , Martina Landová 2 , Martin Míka 2 ,

Date post: 23-Feb-2016
Category:
Upload: kemp
View: 59 times
Download: 0 times
Share this document with a friend
Description:
Glass thermal formation - experiment vs. simulation. Libor Švéda 1 , Martina Landová 2 , Martin Míka 2 , Ladislav Pína 1 , Radka Havlíková 1 , Veronika Semencová 3 KFE FJFI ČVUT VŠCHT Praha Rigaku Innovative Technologies Europe s.r.o. Motivation - PowerPoint PPT Presentation
23
Libor Švéda 1 , Martina Landová 2 , Martin Míka 2 , Ladislav Pína 1 , Radka Havlíková 1 , Veronika Semencová 3 1) KFE FJFI ČVUT 2) VŠCHT Praha 3) Rigaku Innovative Technologies Europe s.r.o. Glass thermal formation - experiment vs. simulation
Transcript
Page 1: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Libor Švéda1, Martina Landová2, Martin Míka2, Ladislav Pína1, Radka Havlíková1, Veronika Semencová3

1) KFE FJFI ČVUT2) VŠCHT Praha3) Rigaku Innovative Technologies Europe s.r.o.

Glass thermal formation -

experiment vs. simulation

Page 2: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

• Motivation• Glass forming process – brief description• Metrology• Simulations – theory• Simulations – initial results• Perspectives – metrology upgrades– simulation modifications

Page 3: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Motivation

• Thermal glass forming as a method how to obtain precise shapes• Precursor to Si wafer forming• Typical applications

– glass:• Space x-ray mirrors (large scale, low specific mass, good surface roughness)• Mirrors for catadioptric systems, like the HUD display (large, low cost)• Mirrors for condensors, like the sun heat sources, photomultiplyers etc. (large, low

cost)– Silicon

• Space x-ray mirrors (excellent surface quality)• Laboratory x-ray mirrors (diffraction imaging, excellent surface quality)

Page 4: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Glass forming process

Form defined shaping• Arbitrary shape• High temperature form / mandrel• Contact method – possible surface

contamination

„Freefall forming“• Shape given by physics• Efficient shape modification only by

temperature gradients• Non-contact method

FOven

G

Oven

Page 5: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Metrology - overview

• Low precision• In-situ• Process dynamics

• Very high precission• On the table• No process dynamics• Possible contamination• Effect of transportation

Page 6: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Metrology – in situprocess dynamics intro

Page 7: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Metrology – in situprocess dynamics curves

Page 8: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Form process parameters prediction

Page 9: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Metrology – in situprofile measurement

End of formation

After cool down

Page 10: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Metrology – on-the-table

Page 11: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Forming simulations - theory

• Heat-up process– Elastic material properties

• Forming process– Viscous liquid approximation at given temperature– Strong change of viscosity with temperature!!!– Problem of boundary conditions

• Cool-down process– Similar to forming process, except that changing temperature

according to the measured temperature decay

G

Temperature gradient?

Page 12: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Simulations – input parameters

DESAG D263 glass• density: 2.510 g/cm3

• Young modulus: 72.9 Mpa• Poisson ratio: 0.209• thermal coeff. of expansion: 7.2e-6 K-1

• strain point: 529°C• annealing point: 557°C• softening point: 736°C• sample size:• 75x25x0.7 mm• 100 x 100 x 0.4 mm

• temperatures used: 540-660°CDynamic viscosity used

Page 13: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Simulations – viscous liquid

Comsol Multiphysics simulations

• Viscous liquid at given temperature• Velocity fields at given time• Actual glass profile is obtained by

integrating the velocity curves

http://www.comsol.com/

Page 14: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Simulations vs. metrologyprocess dynamics

75x25x0.75 mm glassWhy?

Page 15: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Simulation vs. metrologyfixed edges

Page 16: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Form process predictions - simulation

Page 17: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Simulation vs. metrologycool down process

Page 18: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Known error sources

• Cool down during the image acquisition• Cool down process and corrections for that process• Temperature gradients• No definition of fixed points for forming• Image distortions during the in-situ measurements, no camera fixation• Lighting conditions not well defined• Non existent fast non-contact profilometry (no need to transport over large distances, time

gaps)

Page 19: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Perspectives – metrology upgradesin-situ

Ronald A. Petrozzo and Stuart W. Singer Schneider Optics Hauppauge, NY -- Test & Measurement World, 10/15/2001

Page 20: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Perspectives – metrology upgradeson-the-table I

www.stilsa.com

Chromatic aberration based method• Non-contact method• Precision vs. measuring range vs.

allowed surface slope• Typical values:

Measuring range 0.4 mm 4.0 mm 12.0 mmWorking distance 11.0 mm 16.4 mm 29.0 mmAxial resolution 22 nm 160 nm 400 nmAccuracy 80 nm 300 nm 900 nm

Page 21: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Perspectives – simulation upgrades

• Include temperature gradients– Measure actual temperature inside the oven– Apply the temperatures to the simulation

• Include cool down process as a standard point• Treat more precisely the glass/form interface

Page 22: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Conclusions

• First in-situ shaping measurements (full profile)• Discrepancy between simulations and experiment

– Experiment is non-linear x Simulation predict linear bending curve– Higher temperatures are preserved precisely (experiment)– Inoptimal metrology (experiment)– Boundary conditions not well defined (experiment + simulation)

• Experience gathered is used for developing new metrology methods for future experiments (including Silicon shaping)

Page 23: Libor Švéda 1 ,  Martina Landová 2 , Martin Míka 2 ,

Finito


Recommended