+ All Categories
Home > Documents > (11) Probl ém kvadrupolov é interakce - imc.cas.cz · θ=54.74 ° MAS narrows 2 nd order...

(11) Probl ém kvadrupolov é interakce - imc.cas.cz · θ=54.74 ° MAS narrows 2 nd order...

Date post: 16-Oct-2019
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
20
1 (11 ) ) Probl Problé m m kvadrupolov kvadrupolové interakce interakce +1 +3 +2 0 -1 -2 -3 t1 τ 90°-sel. +1 +3 +2 0 -1 -2 -3 t1 τ 90°-sel. ppm -40 -30 -20 -10 20 10 0 ppm -25 -20 -15 -10 -5 35 30 25 20 15 10 5 0 SQ TQ A1, A4 A3 A2 xx Kvadrupolová jádra a jejich NMR spektroskopie má velký význam především pro strukturní charakterizaci anorganických materiálů, ale nejenom jich. Těmto jádrům nebyla dlouho věnována zasloužená pozornost, i když je to poněkud nespravedlivé. Např. 27Al je izotop se 100% zastoupení a jeho obsah v zemské kůře a vůbec kolem nás je mnohonásobně větší než je obsah uhlíku 13C. Zdánlivě tedy není nejmenší důvod, proč má být toto jádro na okraji našeho zájmu, a proč jsou kvadrupolová jádra opomíjena.
Transcript

1

((1111) ) ProblProbl éém m kvadrupolovkvadrupolov ééinterakceinterakce

+1

+3+2

0−1−2−3

t1 τ90°-sel.

+1

+3+2

0−1−2−3

t1 τ90°-sel.

ppm

-40-30-20-1020 10 0 ppm

-25

-20

-15

-10

-5

35

30

25

20

15

10

5

0

SQ

TQ

A1, A4

A3

A2

xx

Kvadrupolová jádra a jejich NMR spektroskopie má velký význam především pro strukturní charakterizaci anorganických materiálů, ale nejenom jich. Těmto jádrům nebyla dlouho věnována zasloužená pozornost, i když je to poněkud nespravedlivé. Např. 27Al je izotop se 100% zastoupení a jeho obsah v zemské kůře a vůbec kolem nás je mnohonásobně větší než je obsah uhlíku 13C. Zdánlivě tedy není nejmenší důvod, proč má být toto jádro na okraji našeho zájmu, a proč jsou kvadrupolová jádra opomíjena.

2

Základní podmínky a jaderné interakce

Atomy aktivní v NMR experimentu – isotopy s největším přirozeným zastoupením:22 spinů 1/2

77 spinů 3/2, 5/2,9/21 spin1

Spin 1/2

Spin 3/2

m=1/2

m=-1/2

m=-1/2

m=1/2

m=3/2

m=-3/2

Spektrum: úzký signál 0,1-100 Hz

Spektrum: široký signál 1000-100000 Hz

Z uvedené tabulky je zřejmé, že drtivá většina izotopů má spin větší jak ½. Většina těchto jader má polovinové spinové číslo, přičemž jader s celočíselným spinem je jen velmi málo. To je např. deuterium nebo dusík 14N. Deuterium má velký význam pro posouzení pohyblivosti jednotlivých částí organických molekul. Obecně ale pro řešení strukturních vlastností jsou kvadrupolová jádra dost problematická. Problém plyne z toho, že tato jádra se mohou nacházet na více energetických hladinách než na dvou. Navíc tato jádra mají nesférickou distribuci náboje. Jederný spin pak interaguje s gradientem elektrického pole, což vede ke kvadrupolovémuštěpení, které může dosahovat závratných hodnot až několika desítek MHz. Výsledkem jsou potom velmi široké, nesymetrické signály. Orientační závislost této kvadrupolové interakce je podobná jako u CSA nebo u dipolárních interakcí.

3

x

KvadrupolárníKvadrupolární rozší ření NMR spekter rozší ření NMR spekter

( ) ( )

( ) ( )3cos30cos358

1cos

1cos32

1cos

244

22

+−=

−=

θθθ

θθ

P

P = 0

=−7/18

θ = 54.74°

MAS narrows 2nd order broadening only by a factor

3 to 4

U kvadrupolové interakce je však situace složitější. Velmi zjednodušeně řečeno rozlišujeme efekty 1. a 2. řádu. Efekty prvního řádu, které lze zjednodušeně popsat sférickou harmonickou oscilací lze odstranit rotací vzorku pod magickým úhlem. Bohužel efekty 2. řádu zůstávají. Tyto efekty mají poněkud komplikovanější vyjádření a i při velmi vysoké rotaci vzorku se stále významně projevují. Spektra jsou sice užší, než jaká by byla ve statickém uspořádání, ale stále se nepřibližují spektrům vysokého rozlišení. Rotace vzorku pouze zmenší rozšíření přibližně na 1/3 až 1/4 .

4

x

( ) ( )

( ) ( )3cos30cos358

1cos

1cos32

1cos

244

22

+−=

−=

θθθ

θθ

P

P

17O DAS crystobalit

DAS DAS -- DynamicDynamic AngleAngle SpinningSpinning

Přesto z vyjádření anizotropie kvadrupolové interakce vyplývají některá řešení. Zatímco efekty prvního řádu vymizí při rotaci vzorku pod úhlem 54,7, pak efekty druhého řádu vymizí při rotaci vzorku pod úhlem 30,5 nebo 70,1. Lze tedy navrhnout dvou-dimenzionální experiment, kdy se data budou snímat při několika orientacích vzorku. Vlastní přímá detekce probíhá standardně při rotaci vzorku pod magickým úhlem, zatímco nepřímádetekční perioda je rozdělena a magnetizace se snímá při dvou úhlech např. pod úhlem 37 a 79. Po uplynutí první časti detekční periody se uloží magnetizace do osy z a změní se úhel rotace a pak se pokračuje v detekci pod změněným úhlem. To se zopakuje ještě před konečnou přímou detekcí. Na dobu změny rotačního úhlu je magnetizace vždy v ose z. Výsledkem je 2D spektrum, které lze zpracovat tak, že v jedné dimenzi získáme izotropní chemický posun. Úhly rotace jsou zvoleny tak, že tvar spektra a vlastně i kvadrupolové štěpení je zrcadlově symetrické. Součet pak dá čistý izotropní chemický posun. Vývoj magnetizace je v obou částech první detekční periody přesně opačný.

5

x

( ) ( )

( ) ( )3cos30cos358

1cos

1cos32

1cos

244

22

+−=

−=

θθθ

θθ

P

P = 0

=−7/18

θ = 54.74°

23Na DOR of Na-oxalate and Na2SO4

DOR DOR -- Double Double OrientationOrientation RotationRotation

Existuje ale i alternativní přístup. To je rotace vzorku pod dvěmi úhly. Koncepčně je to velmi jednoduchá technika, ale experimentálně obtížně proveditelná. Konstrukce měřících sond je velmi komplikovaná. Navíc frekvence vnitřní rotace je jen několik málo kHz. Přesto je dosažené rozlišení NMR spekter velmi pěkné.

6

MQ MQ -- VícekvantováVícekvantová spektroskopie spektroskopie

ppm

-40-30-20-1020 10 0 ppm

-25

-20

-15

-10

-5

35

30

25

20

15

10

5

0

SQ

TQ

A1, A4

A3

A2

xx

Nejelegantnější řešení problému asi nabízí více-kvantová NMR spektroskopie. Základní představa je jednoduchá. Nejprve vyvoláme tří-kvantovou koherenci. To je možné u kvadrupolových jader dosáhnout jedním velmi silným a krátkým pulsem. Tuto tří-kvantovou koherenci necháme vyvíjet během první detekční periody t1a. Ta se vyvíjí podle tří-násobku izotropního chemického posunu a také pod vlivem 6/4 kvadrupolové interakce druhého řádu. Na konci této vývojové periody převedeme 3Q koherenci na SQ koherenci, do tzv. centrálního přechodu. Tato SQC se pak detekuje. Vtip je v tom, že se musí správně nastavit perioda t1b. Správným nastavením poměru obou těchto period se vliv kvadrupolového štěpení druhého řádu zcela kompenzuje. Během této periody se opět magnetizace vyvíjí opačným směrem. Tedy působeníkvadrupolové interakce je opačné. Toto je vlastně analogie DAS experimentů.

7

MQ MQ -- VícekvantováVícekvantová spektroskopie spektroskopie

+1

+3+2

0−−−−1−−−−2−−−−3

evolution mixing

MQSQ ST SQ CT

z-filter“whole echo”

t1 ττττ

90°-sel.

CT

+1

+3+2

0−−−−1−−−−2−−−−3

evolution mixing

MQSQ ST SQ CT

z-filter“whole echo”

t1 ττττ

90°-sel.

CT

ppm

-200 ppm15

10

5

0

ppm

20 0 ppm15

10

5

0

23Na MQ/MAS Na2HCO3.H2O

K tomuto účelu bylo do současné doby navrženo mnoho experimentálních uspořádání a pulsních sekvencí. Nejrobustnější je experiment se z-filtrem. Po první nepřímě detekční periodě, kdy se vyvíjí TQC je krátkým pulsem vytvořena ZQC a ta je selektivním 90 pulsem převedena na SQC kterou lze přímo detekovat. Nevýhodou tohoto uspořádání je, že výsledné spektrum po dvou FT nemá přesně tu podobu jakou bychom chtěli mít. Signály jsou skloněné, což značí, že separace neproběhla zcela dokonale a proto se musí spektrum dále zpracovat. To v některých případech může vést ke vzniku artefaktů. Výsledkem jsou ale poměrně kvalitní data.

8

MQ MQ -- VícekvantováVícekvantová spektroskopie spektroskopie

ppm

-40-30-20-1020 10 0 ppm

-25

-20

-15

-10

-5

35

30

25

20

15

10

5

0

SQ

TQ

A1, A4

A3

A2

xx

+1

+3+2

0−−−−1−−−−2−−−−3

nt1 mt 1+τ+τ+τ+τ

evolution mixing

MQSQ ST SQ CT

z-filter“whole echo”

180°-sel.

CT+1

+3+2

0−−−−1−−−−2−−−−3

nt1 mt 1+τ+τ+τ+τ

evolution mixing

MQSQ ST SQ CT

z-filter“whole echo”

180°-sel.

CT

27Al MQ/MAS kyanit

Jiné pulsní sekvence tento problém dokážou obejít a vyřešit. To zařízeno tím, že se nepřímá detekční perioda TQC skutečně rozdělí na dvě části a tak skutečně dojde k úplné kompenzaci. Díky tomu se v nepřímé dimenzi vyvíjí pouze izotropní hodnoty chemického posunu, které jsou škálovanékvadrupolární interkací.

9

MQ MQ -- VícekvantováVícekvantová spektroskopie spektroskopie

ppm

-40-30-20-1020 10 0 ppm

-25

-20

-15

-10

-5

35

30

25

20

15

10

5

0

SQ

TQ

A1, A4

A3

A2

xx

+1

+3+2

0−−−−1−−−−2−−−−3

DFS: double frequency sweep

MQSQ ST SQ CT

z-filter“whole echo”

evolution mixing

nt1 mt 1+τ+τ+τ+τ180°-sel.

CT+1

+3+2

0−−−−1−−−−2−−−−3

DFS: double frequency sweep

MQSQ ST SQ CT

z-filter“whole echo”

evolution mixing

nt1 mt 1+τ+τ+τ+τ180°-sel.

CT

27Al MQ/MAS kyanit

Ukázalo se také, že velký problém těchto experimentů je konverze TQC na pozorovatelnou magnetizaci, při kterém dochází k velkým ztrátám na citlivosti. Proto se místo jednoho byť velmi silného pulsu používají kompozitní nebo i tvarové pulsy. Tím dojde ke značnému zvýšení citlivosti experimentu.

10

MQ MQ -- VícekvantováVícekvantová spektroskopie spektroskopie

ppm

-40 -45 -50 -55 -60 -65 ppm

-43

-44

-45

-46

-47

-48

-49

-50

-51

-52

-53

ppm

-40 -45 -50 -55 -60 -65 ppm

-43

-44

-45

-46

-47

-48

-49

-50

-51

-52

-53

ppm

-40 -45 -50 -55 -60 -65 ppm

-43

-44

-45

-46

-47

-48

-49

-50

-51

-52

-53

ppm

-40 -45 -50 -55 -60 -65 ppm

-43

-44

-45

-46

-47

-48

-49

-50

-51

-52

-53

ppm

-40 -45 -50 -55 -60 -65 ppm

-43

-44

-45

-46

-47

-48

-49

-50

-51

-52

-53

ppm

-40 -45 -50 -55 -60 -65 ppm

-43

-44

-45

-46

-47

-48

-49

-50

-51

-52

-53

3QMAS with z-filter 3QMAS whole echo

3QMAS whole echoDFS enhanced

I-STMAS

STMAS whole echohalf rotor synchronised

STMAS whole echo

-35 -40 -45 -50 -55 -60 -65 ppm

STMAS, half rotor synchronised

I-STMAS, RAPT enhanced

STMAS

3Q MAS whole echo, split-t1

3Q MAS with z-filter

3Q MAS whole echo, split-t1DFS enhanced

Zde je uvedeno porovnání výsledků získaných několika pulsnímisekvencemi.

11

MQ MQ -- VícekvantováVícekvantová spektroskopie spektroskopie

z-filtered 3Q MAS spectrumof Na2HPO4 ∗∗∗∗ 2 H2O2.5 mm probe, 500 MHzapprox. 250 kHz RF amplitude

qiscsQ

ccqis

ccqis

Q

Q

II

II

δδδ

ηδ

ηω

δ

17

10

31

17

25

103

1))12(4(

)3)1(4(3

3

22500

52

20

2

2

−=

+−=

+∗

−−+−=

A

B

δA(F1) = −2.4 + 33/17 = −0.5 ppm

δB(F1) = −1.9 + 75/17 = +2.2 ppm

Vzhled více-kvantových spekter je ale silně závislý na intenzitě použitého magnetického pole. A to nejenom v tom, že se mění intenzita signálů, ale i proto, že se mění jejich poloha v nepřímé tří-kvantové dimenzi. V jedno-kvantové doméně F2 detekuji jedno-kvantovou koherenci a tedy především kvadrupolové štěpení a to selektivně pro každou strukturní jednotku. Poloha signálů v nepřímé dimenzi F1 je závislá nejenom na izotropní hodnotě chemického posunu, ale i na „zbytkové složce“ kvadrupolové interakce. A právě tato složka je závislá na intenzitě magnetického pole. Správné provedení experimentu také vyžaduje použití dost silných excitačních polí a rotaci vzorku pod magickým úhlem, která převyšuje 20 kHz. Tzn. použití 2,5 mm sondy je nezbytné.

12

MQ MQ -- VícekvantováVícekvantová spektroskopie spektroskopie

qisisoQ δδδ17

103 −=

27Al 3Q MAS of Andalusite at different fields

ppm

-500 ppm

20

25

30

35

40

45

50

18.8 T (800 MHz)

ppm

-200-1000 ppm

20

40

60

80

11.7 T (500 MHz)

Změna ve vzhledu 2D MQ/MAS NMR spekter se změnou magnetického pole je zřejmá. To vyplývá z toho, že velikost kvadrupolové interakce není přímo úměrná intenzitě statického magnetického pole, ale je nezávislá na velikosti a intenzitě vnějšího magnetického pole.

13

MQ MQ -- VícekvantováVícekvantová spektroskopie spektroskopie

ppm

-40-30-20-1020 10 0 ppm

-25

-20

-15

-10

-5

35

30

25

20

15

10

5

0

SQ

TQ

A1, A4

A3

A2

xx

� Kyanite, z-filtered experiment at 11.7 T

� anisotropic traces

� traces for A1 and A4 cannot be resolved� 27 kHz MAS frequency� 250 kHz RF

� excitation pulse: 1.9 µµµµs� conversion pulse: 0.7 µµµµs� 90° selective pulse: 11 µµµµs

Al-27 3Q MAS traces of Kyanite at different fields

50 40 30 20 ppm 20 10 ppm40 30 20 10 ppm

9.4 T 11.7 T 18.8 T

1.0 1.0 1.0 0.8 1.0 0.8 0.7 1.02.0Int:

A proto v některých případech můžeme pozorovat pokles spektrálního rozlišení v nepřímé dimenzi. Hmmm.

14

MQ MQ -- VícekvantováVícekvantová spektroskopie spektroskopie

ppm

-5 -10 -15 -20 -25 ppm

-20

-10

30

20

10

0

P2 P4 P1 P3

Al4

Al1

Al2

Al3

Acquisition

TPPM

t2

1H:

27Al: nt1

CP

31P:

mt1

Applied RF power

1H: decoupling: 65 kHz

27Al: 3Q: 100 kHz27Al: CP: 5 kHz27Al: decoupling: 30 kHz

31P: CP: 42 kHz

Pokročilé techniky více-kvantové NMR spektroskopie ale také umožnily provádět heteronukleární korelační experimenty mezi heterojádry jako jsou 27Al a 31P nebo 29Si. Pro syntézu zeolitů nebo geopolymerů jsou tyto techniky neocenitelné. Jsou ale obtížně proveditelné. Problém nastává při cross-polarizaci, Magnetizaci totiž musíme a můžeme přenášet pouze z centrálního přechodu a tak se musí používat velmi selektivních pulsů a slabých rf polí.

15

GeopolymeryGeopolymery

Geopolymers and NMR, Davidovits: Geopolymers (1994)

27Al MAS NMR

Al(VI) 15 - -5 ppm

Al(V) 38 - 25 ppm

Al(IV) 3D 50 – 68ppm2D 72 – 80ppm

16

GeopolymeryGeopolymery

Geopolymers and NMR, Davidovits: Geopolymers (1994)

17

Standardní p říprava a strukturní zm ěny

metakaolin + NaOH/KOH + water glass + water

kaolinit Al 2O3.2SiO2.2H2O

540 °C, 3h metakaolin geopolymer

-100-50 ppm 100 50 ppm

29Si 27Al

Q4(0Al)

Q4(1Al)

Q4(2Al)Q4(3Al)

Q4(4Al)

-1000 ppm

Q4(4Al) Q4(3Al)

Q4(2Al)

Q4(1Al)

Q0

Q1 Q4(2Al)

Q4(1Al)

Q0

27Al

29Si

18

Standardní p říprava a strukturní zm ěny

metakaolin + NaOH/KOH + water glass + water

kaolinit Al 2O3.2SiO2.2H2O

540 °C, 3h metakaolin geopolymer

27Al

ppm

-2020 0 ppm

-10

10

0

ppm

-2020 0 ppm

-10

10

0

ppm

-2020 0 ppm

-10

10

0

23Na MQ/MAS

19

Polymorfie ATP

27Al

-20-100 ppm

-2040 20 0 ppm

ppm

-2020 0 ppm15

10

5

0

-20-100 ppm

-2040 20 0 ppm

ppm

-2020 0 ppm15

10

5

0

-20-100 ppm

-2040 20 0 ppm

ppm

-2020 0 ppm15

10

5

0

23Na MQ/MAS23Na MQ/MAS

23Na MQ/MAS

31P MAS NMR 31P MAS NMR

31P MAS NMR

23Na MAS NMR

23Na MAS NMR

23Na MAS NMR

20

ShrnutíShrnutí

a. Kvadrupolová interakce – komplikovaný vztah k rotac i vzorkub. DOR – dvojitá rotace vzorkuc. DAS – dynamická rotace d. MQ/MAS – více-kvantová spektroskopiee. Excitace t ří-kvantové koherence a její konverze – jeden puls. f. Vliv intenzity vn ějšího magnetického pole na kvadrupolové št ěpení.


Recommended