+ All Categories
Home > Documents > Elektronová Kryotomografie

Elektronová Kryotomografie

Date post: 11-Jan-2016
Category:
Upload: kay
View: 40 times
Download: 2 times
Share this document with a friend
Description:
Elektronová Kryotomografie. Bc. David Zoul 2010. Princip metody. Dolet elektronů v organickém materiálu je 350 nm/300 keV, takže pro větší vzorky musí být volena větší energie. Rozlišitelnost CCD detektoru je typicky 1,33 nm - PowerPoint PPT Presentation
37
Elektronová Kryotomografie Mgr. David Zoul Fyzikální Ústav Matematicko fyzikální Fakulty Univerzity Karlovy v Praze 2010
Transcript
Page 1: Elektronová Kryotomografie

Elektronová Kryotomografie

Mgr. David ZoulFyzikální Ústav Matematicko fyzikální Fakulty

Univerzity Karlovy v Praze

2010

Page 2: Elektronová Kryotomografie

Princip metody

Dolet elektronů v organickém materiálu je 350 nm/300 keV, takže pro větší vzorky musí být volena větší energie. Rozlišitelnost CCD detektoru je typicky 1,33 nm

Nejmodernější zařízení tohoto typu (stále ještě ve vývoji) dosahují hustoty svazku až 150 e-/Å2, a během ECT kyvu pořídí ž 141 snímků, čímž umožňují rozlišit až 4 nm struktury.

Page 3: Elektronová Kryotomografie

Příklady zobrazení elektronovou kryotomografií

A) 2D řez buňkou Treponema promitiaB) Počítačem upravený řez z obrázku A s dobře patrným flagelárním motoremC) Centrální řez enzymatickým komplexem Pyruvát dehydrogenázaD) Detail jádra téhož multienzymatického komplexu s připojenými subjednotkamiE) Tomografická rekonstrukce kapsidu herpes viruF) Tomografická rekonstrukce kapsidu HIV viruG) Detail peplomery SIV viruH) Počítačová rekonstrukce proteinové struktury téže peplomery

Page 4: Elektronová Kryotomografie

Virus HIV

Page 5: Elektronová Kryotomografie

Virus HIV – vnitřní struktura

Page 6: Elektronová Kryotomografie

Morfologie viru HIV

a),b) Elektromikroskopický 2D snímek viru při pH 7 a pH 6

c) Kryotomogramfický řez o síle 5 nm s jasně patrnými peplomerami

Page 7: Elektronová Kryotomografie

Morfologie HIV při různém pH

a)

Závislost uspořádání glykoproteinů v peplomerách na pH pufrovaném glutaraldehydem.

b)

8 nm řezy virovou částicí

c)

Detail peplomer

Page 8: Elektronová Kryotomografie

Organizace glykoproteinů na povrchu viru

3D rekonstrukce tomogramu, ukazujícho změny konformace glykoproteinů na povrchu peplomer při změně pH

Page 9: Elektronová Kryotomografie

Radiální distribuce hustoty virových glykoproteinů v závislosti na pH

Z grafu je patrno několik maxim hustoty v závislosti na poloměru

Page 10: Elektronová Kryotomografie

3D struktura HIV viru

Page 11: Elektronová Kryotomografie

Elektronová kriotomografie peplomer imaturované a maturované formy viru HIV-1

odhalila glykoproteinovou hexamerní strukturu

Hexamer Gag je stabilizován vazbou na 6 SP1 helixů, které fungují jako molekulární switch, řídící maturaci viru

Page 12: Elektronová Kryotomografie

Extrahovaný kapsid

a) Elektroforéza odhalila 6 rozlišitelných komponent virového kapsidu, extrahovaných působením urey

b) Tomografické řezy virem během působení urey

c) 3D rekonstrukce odhaluje deficit pentonů v kapsidu

Page 13: Elektronová Kryotomografie

Tomografická rekonstrukce

a) Ikosahedrálně zprůměrovaná 3D rekonstrukce

b), c) Pětinásobně průměrovaná 3D mapa orientovaná

podél různých os

Page 14: Elektronová Kryotomografie

Vzájemné uspořádání pentonů a pórů v kapsidové obálce

a) Tomografický řez normálním kapsidem

b) Tomografický řez kapsidem narušeným ureou

Page 15: Elektronová Kryotomografie

Porovnání uspořádání pórů u HSV-1 a bakteriofága

a) Tomografická rekonstrukce pórů na povrchu HSV-1, pořízená v rozlišení 11 nm.

b) Tomografická rekonstrukce fága 15 pořízená v rozlišení 2 nm

c) Tomografická rekonstrukce fága P22 pořízená v rozlišení rovněž 2 nm

Page 16: Elektronová Kryotomografie

Caulobacter crescentus

Page 17: Elektronová Kryotomografie

Nejsilnější přírodní příchytka750 kg/cm2

Page 18: Elektronová Kryotomografie

3D rekonstrukce centrální části dělící se

Caulobacter crescentus Počítačově upravený tomogram mutantní formy bakterie exprimující mutovanou formu dělícího proteinu FtsZ (vybarvená vlákna)

Page 19: Elektronová Kryotomografie

Cytoskeletální filamenta

a) 8 nm tomografický řez dělící se C-crescentus znázorňuje filamenta cytoskeletu uspořádaná podél membrány, vnitřní a vnější membránu

b) Plasmid bakterie E-coli - svazek filament prochází v tomto případě poblíž centrální osy buňky

Page 20: Elektronová Kryotomografie

Bakteriální struktury

1) Lipidová dvojvrstva

2) Uspořádání peptidoglykanů

3) Vnitřní membrána

4) DNA

5) Struktura chemoreceptorů

6) Flagelární motor

Page 21: Elektronová Kryotomografie

Intracelulární struktury

a), b), c) 15 nm tomografický řez odhaluje strukturu polárních chemoreceptorů

Page 22: Elektronová Kryotomografie

Magnetotaktické bakterie• Magnetosomy jsou drobná zrnka menší

než 1 mikrometr, tvořená v případě oxidových magnetosomů magnetitem (oxid železnato-železitý), v případě sulfidových magnetosomů greigitem (sulfid železnato-železitý). Vyskytují se v magnetotaktických bakteriích, například Magnetospirillum magneticum a často tvoří řetízky z několika zrnek. Magnetobakterie využívají svých magnetických inkluzí, tzv. sideroforů, k pohybu podél siločar geomagnetického pole, a to ve směru k jednomu nebo druhému zemskému magnetickému pólu. Opačná orientace na severní a jižní polokouli je vázána do genetické výbavy bakterií, takže se pohybují vždy od míst s vysokým obsahem kyslíku do hlubších míst s obsahem nižším, kde je více potravy. Magnetosomy se tvoří po transportu železitých a železnatých kationtů a jejich příslušné redukci spojené s tvorbou dvojné lipidové membrány, na niž jsou magnetosomy zachyceny.

Page 23: Elektronová Kryotomografie

Série snímků volně plovoucí Ostreococcus tauri pořízených optickým mikroskopem

Ostreococcus je rod jednobuněčných kulovitých zelených řas, náležejících do třídy Prasinophyceae . Je součástí mořského planktonu. Byl objeven v roce 1994. Je nejmenším známým volně žijícím eukaryotickým organismem, protože jeho buňka dosahuje velikosti pouhých 0,8 µm.Jeho jaderný genom má 12,56 milionů párů bazí a byl osekvencován v roce 2006. Ostreococcus tauri má 14 chromozomů, jeden chloroplast a několik mitochondrií.

Page 24: Elektronová Kryotomografie

O-tauri před a po zmrazení

Page 25: Elektronová Kryotomografie

Příčné řezy a 3D rekonstrukce O-tauri

Page 26: Elektronová Kryotomografie

Identifikace jednotlivých organel

a) Prorůstání jádra okolo chloroplastu

b) 36 nm tomografický řez touž buňkou

c) 24 nm řez jinou buňkou s dobře patrnou mitochondrií

Page 27: Elektronová Kryotomografie

Chloroplasta) 7,2 nm tomografický řez.

2 škrobové granule jsou narušeny elektronovým svazkem (bélé šipky)

b) Orámovaná oblast obsahuje 3 druhy membrán. Černě buněčná membrána, zeleně membrána chloroplastu, červeně vnější membrána tylakoidu, modře vnitřní membrána tylakoidu.

c) 24 nm řez rannou buňkou se zakřiveným chloroplastem

d) 36 nm řez pozdní buňkou se zaškrceným chloroplastem, jednou tmavou a jednou světlou granulí na obou stranách a řetízkem cytoplazmatických granulí (*)

Page 28: Elektronová Kryotomografie

Povrch jádra

A) 41 nm silný řez buňkou s kompletně uzavřenou jadernou membránou (černá šipka). Malý rozměr buňky a neodloučené organely ukazují na její nedávné dělení.

B) 31 nm silný řez buňkou. Jaderná membrána kryje okolo 3 – 4 jader (černé šipky). 2 černé značky ukazují na jaderné póry. Bílé značky pak označují větve ER.

C) 19,2 nm silný řez pozdní buňkou krátce před počátkem mitózy, ukazuje kompletně otevřené jádro s jen velmi málo fragmenty jaderné membrány (černé šipky)

Page 29: Elektronová Kryotomografie

Komplex jaderného póru

3,6 nm silné řezy skrze jaderný pór (první pořízený zboku, druhý shora), znázorňující centrální, vnitřní a vnější průměr (viz značky)

Page 30: Elektronová Kryotomografie

Mitochondrie

A) 3D rekonstrukce mitochondrie.

B – D) 15, 55 a 29 nm silné řezy 3 různými mitochondriemi ukazující ukotnení krist na membráně (tmavé značky) a husté granule (bílé značky) uvnitř organely.

E) 4,8 nm silný řez kanálem propojujícím vnější a vnitřní membránu mitochondrie (c – cytoplasma, m – mitochondrie)

Page 31: Elektronová Kryotomografie

Endoplazmatické retikulum

ER leží blízko okraje buňky a je prorůstáno 4 granulemi

Page 32: Elektronová Kryotomografie

3D rekonstrukce Golgiho aparátu

Počítačově dobarvená 3D rekonstrukce Golgiho aparátu Ostreococcus tauri.

c – chloroplast

m – mitochondrie

n - jádro

Page 33: Elektronová Kryotomografie

Golgiho aparátTomografické řezy Golgiho aparátem ze 3 různých buněk. Šipkami jsou označeny cisterny. Na 3D rekonstrukci je ukázán izolovaný Golgiho aparát.

5 různě vybarvených cisteren společně tvoří tělo Golgiho aparátu.

Okolní vesikuly jsou vybarveny různými odstíny modré

Page 34: Elektronová Kryotomografie

Vnější makromolekulární komplexy

A) 12 nm silný řez ukazující svazky filament (tmavé značky) vynořující se z buněčného výčnělku. Černé šipky označují ER.

B) 12 nm silný řez ukazující makromolekulární komplexy (bílé značky) na vnějším povrchu plasmatické membrány

Page 35: Elektronová Kryotomografie

Mikrotubuly

A) 9,6 nm silný řez skrze část mikrotubulu v jeho podélné ose ukazuje jeho konstantní průměr a průsvit.

B) 16,8 nm silný řez mikrotubulem v buněčném kntextu. Tupé konce, označené značkami, uzavřené mezi jadernou membránou a plasmatickou membránou.

n) Zvětšený detail 38,4 nm řezu skrze mikrotubulus v rovině kolmé k jeho podélné ose, zdůrazňující jeho trubicový tvar

Page 36: Elektronová Kryotomografie

Ribosomální komplexy

A) Výsledné normalizované cross-korelační koeficienty vynesené do grafu od nejlepšího k nejhoršímu, pro ribosomům podobné částice nalezené ve 3 různých buňkách, kde buňka označená jako 3D byla výrazně menší než zbylé 2.

B) 24 nm řez s 500 (červeně) a 2000 (zeleně) ribosomálních objektů v cytoplasmě ukazuje na rozumný dolní i horní odhad jejich počtu.

C) 3D rekonstrukce prostorové distribuce 1250 ribosomálních objektů v cytoplasmě

Page 37: Elektronová Kryotomografie

Děkuji za pozornost


Recommended